Общее количество учеников во всех трёх классах равно 28+24+20 = 72. Так как 72 делится на 3, то равенство количества учеников во всех трёх классах возможно - в каждом классе будет по 72/3 = 24 ученика.
Из условия задачи не ясно, сколько переводов из класса в класс допускается - один или два (три перевода и более могут быть заменены эквивалентными одним или двумя), поэтому вторую часть задачи решим исходя из более жёсткого ограничения (один перевод):
Задача имеет решение, например, для троек:
21, 25, 29
21, 26, 31
19, 22, 25
20, 21, 22
и много других.
Третью часть задачи решим исходя из более мягкого ограничения (два перехода):
Задача не имеет решения, например, для троек:
21, 22, 24
22, 25, 27
23, 25, 28
и так далее (во всех указанных случаях общее число учеников не делится на 3).
Указанные ответы во второй и третьей части универсальны - годятся как для жёсткого, так и для мягкого ограничения (при сдаче решения про эти ограничения лучше вообще не упоминать, они даны только для разъяснения)
Пошаговое объяснение:
Рисунок с графиком в приложении.
Решаем квадратное уравнение.
D = b² - 4*a*c = (2)² - 4*(1)*(0) = 4 - дискриминант. √D = 2.
x₁ = (-b+√D)/(2*a) = (-2+2)/(2*1) = 0 - первый корень
x₂ = (-b-√D)/(2*a) = (-2-2)/(2*1) = -4/2 = -2 - второй корень
1) Нули функции: Х₁ = 0 и Х₂ = -2 - корни уравнения.
2) Минимум функции через первую производную.
y'(x) = 2*x + 2 = 0 и х = -1 - корень производной
3) Экстремум функции: Ymin(-1) = -1.
4) Отрицательна: y<0 x∈(-1;0)
Положительна: y≥0 x∈[-4;-1]∪(0;4]
5) Пересечение с осью ОХ - нули функции - п.6.
6) Пересечение с осью ОУ. у(0) = 0