Для 3217:6 частное 536, остаток 1.
Для 1984:3 частное 661, остаток 1.
Для 7198:4 частное 1799, остаток 2.
Пошаговое объяснение:
3217 | 6
30 | 536
21
18
37
36
1
Для 3217:6 частное 536, остаток 1. Проверим:
536·6+1=3216+1=3217 верно.
1984 | 3
18 | 661
18
18
4
3
1
Для 1984:3 частное 661, остаток 1. Проверим:
661·3+1=1983+1=1984 верно.
7198 | 4
4 | 1799
31
28
39
36
38
36
2
Для 7198:4 частное 1799, остаток 2. Проверим:
1799·4+2=7196+2=7198 верно.
3
Пошаговое объяснение:
Проверим каждое из утверждений.
1) «Если в параллелограмме две стороны равны, то такой параллелограмм является ромбом» — неверно, поскольку у любого параллелограмма противоположные стороны равны, однако он не обязан быть ромбом. Правильно утверждение: параллелограмм является ромбом, только если смежные стороны равны.
2) «Если в четырёхугольнике две диагонали равны и перпендикулярны, то такой четырёхугольник — квадрат» — неверно, поскольку существуют четырёхугольники с равными взаимно перпендикулярными диагоналями, но не являющиеся квадратами. Правильное утверждение: Если в четырёхугольнике две диагонали равны и перпендикулярны и точкой пересечения делятся пополам, то такой четырёхугольник — квадрат.
3) «Если в ромбе диагонали равны, то такой ромб является квадратом» — верно.
4) «Углы при меньшем основании трапеции тупые» — неверно, например, у прямоугольной трапеции только один угол при меньшем основании тупой.
2*5y+3y=1
10y+3y = 1
13y=1 | : 13
y = 1/13
x = 5* 1/13 = 5/13
ответ:
Если мой ответ вам, то по сделать его лучшим