М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
18Tanya
18Tanya
29.07.2022 14:55 •  Математика

Пять дней ателье шили по 27 рубашек в день, а потом еще 72 рубашки. сколько рубашек осталось дошить ателье, если заказ был на 430 рубашек? решите!

👇
Ответ:

430-(5*27+72)=223

ответ: 223 рубашки осталось дошить ателье

4,7(97 оценок)
Ответ:
хома79
хома79
29.07.2022

223

Пошаговое объяснение:

1)27*5=135

2)135+72=207

3)430-207=223(р)-сталось

4,6(38 оценок)
Открыть все ответы
Ответ:
1. Делитель натурального числа (далее нч) - это число, на которое делится нч без остатка. Кратное - это число, получаемое при умножении нч на другое число. Т.е. которое можно поделить на нч без остатка. Например, число 4. 2 - это делитель нч, т.к. 4:2=2. А 16 - это кратное. 16:4=4. 2. При делимости на 10 число должно быть "круглым", т.е. оканчиваться на 0. Например, 70. При делимости на 5 нч должно оканчиваться 0 или 5. Например, 35. На 2 делится любое четное число, то есть заканчивающееся на 0;2;4;6;8. 16;20;38 и прочие. Для деления на 3 и 9 необходимо, чтобы сумма цифр нч давала в результате число, кратное 3 и 9 соответственно. Например, 111 делится на 3, потому что 1+1+1=3. И 222 делится на 3, так как 2+2+2=6, а 6 кратно 3. На 9 делится, например, 630, 6+3+0=9. 882 тоже делится на 9, 8+8+2=18, кратно 9. 3. Простые числа - это числа, делящиеся без остатка только на себя и единицу. Составные - делящиеся без остатка не только на себя и единицу, но и еще на какое-либо число (или числа). Например, 5-простое, а 6-нет, потому что 6:2=3. 4. Это проще показать. Допустим, надо разложить число 6. 6:2=3; 6:3=2. Простые множетили 6 - 2 и 3. Но тут важно помнить простые числа хотя бы до 23, потому что если один из множителей, например, 4, то следует разложить его на 2 и 2 (записав ...2;2). 5. Взаимно простыми называются нч, если они не имеют никаких общих делителей, кроме 1. Например, 45 и 16. 45=(5;3;3), 16=(2;2;2;2), ни один из множителей не совпадает. 6. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь. Поэтому 2|3 = 4(2*2)|6(3*2) =6|9 и т.п. 7. Чтобы умножить дробь, необходимо увеличить числитель. Чтобы разделить - знаменатель. 2|3 * 2=2*2|3=4|3. 2|3 : 3=2|3*3=2|9. Чтобы умножить дробь на дробь надо числитель первой дроби умножить на числитель второй, знаменатели умножить аналогично. 2|3*4|5=2*4|3*5=8|15 Чтобы разделить дробь на дробь, надо числитель первой дроби умножить на знаменатель второй, а знаменатель - на числитель. 4|5:2|3=4*3|2*5=12|10(=1,2) 8. Два числа, произведение которых равно 1, называют взаимно обратными. Например: 3 и 1|3, т.к. 3*1|3=3|3=1 9. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дроби. Если числитель и знаменатель дроби являются взаимно простыми числами, то такая дробь называется несократимой. 6|9=6:3|9:3=2|3. 10. Для приведения дробей к общему знаменателю надо: 1. найти наименьшее общее кратное знаменателей этих дробей (наименьший общий знаменатель); 2. разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель; 3. умножить числитель и знаменатели каждой дроби на ее дополнительный множитель. 1|2 и 2|3. 2 и 3 - простые, значит, НОК=произведению 2 и 3=6. 6:2=3;6:3=2. 1*3|2*3 и 2*2|3*2= 3|6 и 4|6
4,4(59 оценок)
Ответ:
lholkina
lholkina
29.07.2022

Объем фигуры, образованной в результате вращения вокруг оси Ox криволинейной трапеции, ограниченной непрерывной кривой y = f(x) (a ≤ x ≤ b), Осью Ox и прямыми x= a и x = b, вычисляется по формуле:

Аналогично, объем фигуры, образованной в результате вращения вокруг оси Oy криволинейной трапеции, ограниченной непрерывной кривой y = φ(x) (c ≤ x ≤ d), Осью Ox и прямыми y= c и y = d, находится по формуле:

ПРИМЕР №1. Вычислить объемы фигур, образованных вращением площадей, ограниченных указанными линиями.

y2 = 4x; y = 0; x = 4.

Пределы интегрирования a = 0, b = 4.

ПРИМЕР №2. y2 = 4x; y = x

Выполним построение фигуры. Решим систему:

y2 = 4x

y = x

найдем точки пересечения параболы и прямой: O(0;0), A(4;4).

Следовательно, пределы интегрирования a = 0; b = 4. Искомый объем представляет собой разность объема V1 параболоида, образованного вращением кривой y2 = 4x , и о объема V2 конуса, образованного вращением прямой y = x:

V = V1 – V2 = 32π – 64/3 π = 32/3 π

см. также как вычислить интеграл онлайн

ПРИМЕР №3. Вычислить объем тела, полученного вращением вокруг оси Оx фигуры, ограниченной прямой y=x и параболой .

Найдем точки пересечения линий. Для этого решим уравнение . Получим x1=0, x2=1.

Рис. 2. Объем тела вращения.

Объем тела может быть вычислен по формуле , где

, f2(x)=x.

.

ответ: .

см. также Площадь фигуры, ограниченной линиями: Площадь фигуры, ограниченной линиями

4,5(7 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ