1. 10 м
2. 5 м
3. 60 м
Пошаговое объяснение:
S = 4S(полукруга)+S(квадрата)
Пусть 2a - длина стороны квадрата, тогда радиус полукруга в 2 раза меньше и равен а.
S(полукруга) =
*r^2/2, где r - радиус полукруга.
4S(полукруга) = 4
*а^2/2 = 2
*а^2
S(квадрата) = (2a)^2 = 4a^2
Общая площадь S = 4S(полукруга)+S(квадрата) = 2
*а^2 + 4a^2 =
= 6a^2 + 4a^2 = 10a^2 = 250 м²
Тогда а = 5 м - длина радиуса полукруга
2а = 10 м - длина стороны квадрата
Забор состоит из 4 полукругов, значит, его длина
4*2
r/2 = 4
r = 4
a = 4*3*5 = 60 м
заявленный и в приведённом условии. Далее порассуждаем практически:
;
;
;
;
;
;
производная
больше производной
, т.е. дальше левая часть уравнения, растёт быстрее, чем правая, а значит, других корней при
быть не может.
левая часть уравнения положительна, а правая отрицательна, так что других корней при
быть не может.
, так как при сравнении двух непрерывных функций на этом интервале меняется знак.
где
то:
Это число, очевидно иррационально, что легко доказать от обратного методом Евклида. Однако справа должно быть рациональное число
а значит, мы пришли к противоречию. Таким образом, второе решение иррационально.
по определению дающая решение, т.е. являющаяся обратной, к функции
Функция вводится аналогично, скажем, функции
являющейся решением уравнения
но в отличие от арктангенса, функция Ламберта используется намного реже в прикладных задачах (в основном в задачах теплопроводности), и поэтому – менее широко известна. Функция вводится на расширенной комплексной плоскости, т.е. алгебраически, а не арифметически, а значит по определению, может быть многозначной, и является таковой при отрицательных значениях аргумента
хотя нам достаточно будет знать лишь её действительные значения, которых при отрицательных аргументах всегда два. Вид действительных ветвей функции Ламберта представлен на приложенном изображении.
;
;
;
;
тогда:
отсюда через функцию Ламберта:
;
равна:
;
искомое значение и вычисляя
добиваясь его равенства 
как раз и даст значение
, что можно легко проверить подстановкой.
;
;
;
;
Б)
Пошаговое объяснение:
Частное общего пути деленное на общее время.
Чтобы найти среднюю скорость нужно общий путь поделить на общее время:
S - путь
t - время
(S1 + S2) : ( t1 + t2 )