Периметр прямоугольного треугольника равен 60 см. Высота, проведенная к гипотенузе, равна 12 см. Найти площадь треугольника.
* * *
Площадь треугольника равна произведению радиуса r вписанной окружности на полупериметр р
Формула радиуса вписанной в прямоугольный треугольник окружности
r=(a+b-c):2 , где а и b - катеты, c -гипотенуза.
a+b=P-с=60-c
r=(60-c-c):2=30-c
По другой формуле
r=S:p
S=h*c:2
S=12*c:2=6c
р=60:2=30
r=6c/30=c/5
Приравняем найденные значения радиуса
c/5=30-c
150-5c=c
6c=150
c=25 см
r=25/5=5 см
S=r*p=5*30=150 см²
В основании пирамиды лежит квадрат со стороной а, проекция бокового ребра на основания даст половину диагонали квадрата = 12*cos60 = 6 см. Диагональ квадрата
равна 12 см, отсюда сторона квадрата а = 12/√2 см.
Площадь основания a² = 144/2 = 72 см²
Боковая поверхность пирамиды равна площади 4х граней (треугольников) основание которых а, а высота равна апофеме H.
Высота пирамиды находится по боковому ребру h = 12*sin60 = 12*√3/2= 6√3
H=√[(a/2)²+h²] = √[(12/√2)²+(6√3)²] = √(72+12)=√84
s=a*H/2 = 12/√2 * √84/2 = 6√42
Полная поверхность S = 72 + 24√42 ≈ 227,5 см²