y’ всегда положительна.
Пошаговое объяснение:
Найдём производную функции:
y’=15x^4+27x^8
Приравняем производную функции к нулю и найдём критические точки:
15x^4+27x^8=0;
3x^4(5+9x^4)=0;
x1=0
9x^4=-5
Т.к. значение в четвертой степени всегда положительно, а число"-5" отрицательно, то у х2 нет решения.
В итоге решение одно-"х=0". Исследуем эту точку на максимум/минимум.
У нас есть 2 интервала: (-∞;0)∪(0;+∞). Возьмём любую точку из обоих интервалов и подставим в производную, например, -1 и 1:
15*1^4+27*1^8=42;
15*(-1)^4+27*(-1)^8=42;
Как видно, оба значения получились положительными. Это значит, что в точке х=0 нет ни минимума, ни максимума и функция монотонно возрастает.
2 первое правило
Если F есть первообразная для f, a k постоянная то функция kF первообразная для kf
(kf)’=kF’=kf
3 функция y=f(x)
определенная при х=а, аналогично справедливому равенству
f(x)=dx =0
4 f(x)dx=F(x)+C если F’(x)=f(x)
Неопределённым интегралом функции f(x) называется совокупность всех первообразных этой функции
5 ответ на фотке
6 Пусть функция y=f(x) непрерывна на отрезке [a, b] и F(x) одна из первообразных функции на это отрезке тогда справедливо формула Ньютона Лейбница f(х)dx=F(b)-F(a)