М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Danila29012006
Danila29012006
27.01.2022 13:01 •  Математика

1. Прямоугольник и квадрат имеют одну и ту же площадь. Длина прямоугольника равна 4 дм, а ширина 0,9 м. Чему равна длина стороны квадрата.
2. Найдите объём прямоугольного параллелепипеда, если длина его равна 1,2 м, ширина 0,5 м, а высота 0,3 м с задачами

👇
Ответ:
avaitekhovich
avaitekhovich
27.01.2022

Пошаговое объяснение: 1)длина прямоугольника 4 дм=0,4 м

S= 0,4 х 0,9 = 0,36 м2

Сторона квадрата равна 0,6 м  

S= 0,6 в квадрате т.е. 0,36 м2

2) Объем равен  1,2 х 0,5 х 0,3= 0,18 м3

4,6(83 оценок)
Открыть все ответы
Ответ:
lizavolod17
lizavolod17
27.01.2022
Дано: S3 = 13, b2 = 3.
Найти S4.

b2 = b1*q = 3. Отсюда b1 = 3/q.
Сумма трёх: S3 = b1 + b1*q  + b1*q² = 13,
отсюда   b1 + b1*q² = 13 - 3 = 10.
Вынесем за скобки  b1 (1 + q²) = 10, заменим b1 = 3/q:
(3/q) (1 + q²) = 10.
Приведя к общему знаменателю, получаем квадратное уравнение:
3q² - 10q + 3 = 0.
Квадратное уравнение, решаем относительно q: Ищем дискриминант:
D=(-10)^2-4*3*3=100-4*3*3=100-12*3=100-36=64;Дискриминант больше 0, уравнение имеет 2 корня:
q_1=(√64-(-10))/(2*3)=(8-(-10))/(2*3)=(8+10)/(2*3)=18/(2*3)=18/6=3;q_2=(-√64-(-10))/(2*3)=(-8-(-10))/(2*3)=(-8+10)/(2*3)=2/(2*3)=2/6=1/3.
Находим 2 значения b1:
b1(1) = 3/3 = 1,
b1(2) = 3/(1/3) = 9.

И  2 четвёртых члена:
b4(1) = 1*3³ = 27,
b4(2) = 9*(1/3)³ = 9/27 = 1/3.

Тогда имеем 2 ответа:
S4(1) = S3 + b4(1) = 13 + 27 = 40
S4(2) = S3 + b4(2) =  13 + (1/3) = 40/3.
4,4(43 оценок)
Ответ:
copekuti
copekuti
27.01.2022

Введите поисковой запрос

Расширенный поиск

ВОЙТИ / ЗАРЕГИСТРИРОВАТЬСЯЕдиное окно доступа к образовательным ресурсам

ДИСКРЕТНАЯ МАТЕМАТИКА: МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧ ПО КУРСУ

Автор/создатель: Азарнова Т.В., Булгакова И.Н.

13

Голосов: 12

Данная работа содержит краткое изложение теории множеств, бинарных отношений и комбинаторики, соответствующее курсу лекций по дисциплине "Дискретная математика", читаемому на факультете ПММ. Пособие содержит ряд примеров, демонстрирующих использование изложенной теории для решения конкретных задач. Для закрепления материала в конце параграфов приведены задачи для самостоятельного решения, которые могут быть также использованы для проведения практических занятий.

Приведенный ниже текст получен путем автоматического извлечения из оригинального PDF-документа и предназначен для предварительного просмотра.

Изображения (картинки, формулы, графики) отсутствуют.

Страницы ← предыдущая следующая →

1 2 3 4 5 6

11

Теория множеств

1) последовательности непустых множеств Χ 1 , Χ 2 ,..., Χ n ,..., такой, что

Χ 1 ⊃ Χ 2 ⊃ ... и Ι Χ n = ∅ ;

n∈Ν

2) последовательности множеств, отличных от универсального множества

Λ , такой, что Χ 1 ⊂ Χ 2 ⊂ ... и Υ Χ n = Λ ;

n∈Ν

3) семейства множеств такого, что пересечение любого конечного числа

множеств из этого семейства непусто, а пересечение всех множеств пусто.

§ 2. Прямое произведение множеств.

Бинарные отношения

Произведением (или декартовым произведением) Χ 1 × Χ 2 двух

непустых множеств Χ 1 и Χ 2 будем называть множество упорядоченных

пар (x1 , x 2 ), где x1 ∈ Χ 1 , x 2 ∈ Χ 2 . Это понятие выросло из понятия

декартовой системы координат. Данное понятие можно обобщить и на

случай n множеств. Если Χ 1 , Χ 2 ,..., Χ n - n непустых множеств, то их

произведение состоит из всевозможных упорядоченных наборов

(x1 , x 2 ,..., x n ) , x k ∈ Χ k , k = 1,..., n элементов этих множеств. Если множества

Χ 1 = Χ 2 = ... = Χ n = Χ , то их произведение Χ 1 , Χ 2 ,..., Χ n обозначается

Χ n . Так, символом R n обозначается множество упорядоченных векторов n

вещественных чисел.

Любое подмножество из произведения Χ ×Υ называется бинарным

отношением. Если Χ =Υ , то бинарное отношение называется бинарным

отношением на множестве Χ . Бинарные отношения обозначаются буквами

φ , ρ , f ,... Если пара (x, y ) принадлежит бинарному отношению ρ , то пишут

(x, y )∈ ρ или x ρ y .

Для задания бинарного отношения ρ используют те же методы, что и

для произвольных множеств, кроме того, бинарное отношение, заданное на

конечном множестве Χ , можно задать в виде графа, а бинарное отношение

на множестве R можно задать в виде декартовой диаграммы. Под графом

бинарного отношения мы понимаем схему, в которой элементы множества

Χ изображаются точками на плоскости, элементы x, y ∈ Χ , такие, что пара

(x, y )∈ ρ соединяются стрелкой, направленной от x к y , пары (x, x )∈ ρ

изображаются петлей вокруг точки x . Под декартовой диаграммой

понимают изображение пар (x, y ) ∈ ρ в декартовой прямоугольной системе

координат.

Областью определения бинарного отношения ρ называется множество

D ρ = {x ∈ Χ : ∃y (x, y )∈ ρ }.

Областью значений бинарного отношения ρ называется множество

R ρ = {y ∈Υ : ∃x (x, y )∈ ρ }.

12

Теория множеств

Бинарное отношение ρ на множестве Χ называется рефлексивным,

если для любого x ∈ Χ пара (x, x ) ∈ ρ . Если Χ - конечное множество, то

рефлексивность бинарного отношения ρ означает, что на графе данного

бинарного отношения вокруг каждой точки x из Χ есть петля. Если Χ = R ,

то рефлексивность бинарного отношения ρ с точки зрения декартовой

диаграммы означает, что в число изображенных точек войдут все точки

прямой y ( x) = x .

Бинарное отношение ρ на (4,2 ), .

(2,3), (2,4), (2,5) (5,1), (5,2) 

 

4,7(4 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ