ответ: -2/3.
Пошаговое объяснение:
Положим x-π/3=t, тогда x=t+π/3 и при x⇒π/3 t⇒0. Тогда данный предел можно записать в виде lim [√3-sin(t)-√3*cos(t)]/sin(3*t/2), где t⇒0. Но так как √3-√3*cos(t)=√3*[1-cos(t)]=2*√3*sin²(t/2), то этот предел можно записать в виде lim[-sin(t)+2*√3*sin²(t/2)]/sin(3*t/2), где t⇒0. Но при t⇒0 бесконечно малые величины sin(t), sin²(t/2) и sin(3*t/2) можно заменить эквивалентными бесконечно малыми t, (t/2)²=t²/4 и 3*t/2 соответственно, так что данный предел примет вид 2/3*lim [-t+√3*t²/2]/t=2/3*lim(-t/t)+1/√3*lim(t²/t)=-2/3+1/√3*lim(t), где t⇒0. Отсюда искомый предел равен -2/3.
Проведём проверку по правилу Лопиталя: [2*sin(x)-√3]'=2*cos(x), а [cos(3*x/2)]'=-3/2*sin(3*x/2). При x⇒π/3 первое выражение стремится к 1, а второе - к -3/2. Поэтому их отношение стремится к 1/(-3/2)=-2/3, что совпадает с полученным ответом.
8,5-1,3=7,2 км\ч
9,8*3,5=34,3 км
7,2*5,6=40,34 км
ответ: 34,3 по течению,40,34-против.
На полку идёт х досок, значит:
9х+3*4х=231
9х+12х=231
21х=231
х=231/21
х=11м
11*4=44м
ответ: 11 м досок на полку,44 м на шкаф.
Пусть на третью машину погрузили х ,тогда на первую 1,3х,а на вторую 1,5 х
х+1,3х+1,5х=13,3
3,8х=13,3
х=13,3:3,8
х= 3,5 т
3,5*1,3= 4,55 т
3,5*1,5= 5,25 т
ответ: 3,5 погрузили на третью машину,4,55 на первую и 5,25 на вторую.
4,2(0,8+y)=8,82
0,8+y = 8.82/4,2
0,8+y = 2,1
y = 2,1-0,8
y = 1,3
3/4/0,2 = 30/4 = 0,75 / 0,2 = 7,5 / 2 = 3,75