М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
умняша80
умняша80
19.07.2022 10:52 •  Математика

3. Как, имея лишь два сосуда 5л и 7 л, набрать из речки 6 л воды? предметы
1шаг;2 шаг;3 шаг;4 шаг;5шаг
6шаг;7шаг;8шаг​

👇
Ответ:
gagag590
gagag590
19.07.2022

Набираем воду в 5 литровую банку, затем переливаем в 7 литровую банку, потом набираем еще раз 5 литровую банку, переливаем опять, в 5 литровой банке остается 3 литра, из 7 литровой выливаем воду, заливаем оставшиеся 3 литра в 7 литровую, набираем еще раз 5 литровую, переливаем в 7 литровую, остается 1 литр в 5 литровой банке, выливаем этот литр в 7 литровую банку и доливаем еще 5 литров воды

4,7(42 оценок)
Ответ:
Милана070800
Милана070800
19.07.2022
1. Из 7 литра льём в 5
2. 5 выливаем доливаем те 2
3.Наберём еще раз в 7л
4. Выливаем в 5л осталось 4л
5. Льём 4л в пустое 5л
6. Набираем 7л
7.один литр доливаем в 5Л
8. В 7 литровом осталось ровно 6Л
4,7(73 оценок)
Открыть все ответы
Ответ:
Makoto2000
Makoto2000
19.07.2022

ответ:

3. з цифр «4», «7», «9» числа. скільки можна скласти: а) трицифрових чисел так, щоб жодна з них не повторювалась; б) трицифрових чисел; в) двоцифрових чисел так, щоб жодна з них не повторювалась; г) двоцифрових чисел?

а)  

б)  

в)  

г)  

7. скільки різних дільників має число 2310?

розкладемо число 2310 на прості множники і складатимемо їх різні добутки (від 1 до 5 множників), тобто скла- датимемо різні підмножини. 2310 = 2 *3⋅5* 7⋅11 — усього п’ять множників. тоді маємо:  

6. яку кількість різних натуральних чисел можна скласти з цифр 0, 2, 3, 4, щоб в кожне таке число кожна цифра входила не більше одного разу?

одноцифрових =  

двоцифрових =  

трицифрових =  

чотирицифрових =  

всього = 3+9+18+18 = 48

10. у ящику 20 деталей, серед яких 4 браковані. скількома способами можна взяти: а) 5 деталей; б) дві браковані; в) одну браковану і чотири стандартні; г) шість деталей, серед яких хоча б одна бракована; д) дві однакові за якістю?

а)  

б)  

в)  

21. знайти ймовірність того, що дні народження 12 осіб припадуть на різні місяці року.

n = 1212

m = 12!

p(a) =  

22. студент прийшов на екзамен підготувавши 20 з 25 питань, екзаменатор задав йому 3 питання. знайти ймовірність тго, що студент знає відповіді на всі питання.

аі – випадкова подія

р(а) =  

= 0,497

27. на книжковій полиці випадковим чином розставляють 4 книги з економіки і три книги з ії. яка ймовірність того, що книги з одного предмета стоятимуть поруч?

p4*p3 =

30. десять осіб випадковим чином сі за круглий стіл. знайти ймовірність того, що чотири певні особи опиняться поруч.

р(а) =   загальна кількість рівноможливих способів розмістити 10 осіб на 10 місцях за круглим столом дорівнює кількості перестановок із 10 елементів, тому n! = 10!

4 певні людини можна розмістити поруч 4! способами. інших 6 людей можна розмістити 6! способами. за круглим столом (10 місць) пару певних 4 людей можна розмістити 10 спосо- бами.

m = 4! *6! *10

p(a) =  

32. а та в і ще 8 осіб стоять у черзі. знайти ймовірність того, що між а та в стоять три особи.

n = 2+8 = 10 r =3

p(a) =  

33. з урни, в якій лежать 12 білих і 8 червоних кульок, беруть послідовно дві кульки. відомо, що перша кулька виявилась білою. яка ймовірність того, що друга кулька виявиться: а) білою; б) червоною?

а – взята біла кулька

в – взята червона кулька

якщо першою взяли білу кулю, то в урні залишилося 11 білих кулі та 8 червоних, тому

а)  

пошаговое объяснение:

4,6(42 оценок)
Ответ:
amhadovmalik
amhadovmalik
19.07.2022

Даны координаты пирамиды: A1(6,8,2), A2(5,4,7), A3(2,4,7), A4(7,3,7).

1) Координаты векторов.

Координаты векторов находим по формуле:

X = xj - xi; Y = yj - yi; Z = zj - zi

здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;

Например, для вектора A1A2

X = x2 - x1; Y = y2 - y1; Z = z2 - z1

X = 5-6; Y = 4-8; Z = 7-2

A1A2(-1;-4;5)

A1A3(-4;-4;5)

A1A4(1;-5;5)

A2A3(-3;0;0)

A2A4(2;-1;0)

A3A4(5;-1;0)

2) Модули векторов (длина ребер пирамиды)

Длина вектора a(X;Y;Z) выражается через его координаты формулой:

a = √(X² + Y² + Z²).

Нахождение длин ребер и координат векторов.

Вектор А1A2={xB-xA, yB-yA, zB-zA} -1 -4 5 L = 6,480740698.

Вектор A2A3={xC-xB, yC-yB, zC-zB} -3 0 0 L =3.

Вектор А1A3={xC-xA, yC-yA, zC-zA} -4 -4 5 L = 7,549834435.

Вектор А1A4={xD-xA, yD-yA, zD-zA} 1 -5 5 L =7,141428429.

Вектор A2A4={xD-xB, yD-yB, zD-zB} 2 -1 0 L = 2,236067977.

Вектор A3A4={xD-xC, yD-yC, zD-zC} 5 -1 0 L = 5,099019514.

3) Уравнение прямой

Прямая, проходящая через точки A1(x1; y1; z1) и A2(x2; y2; z2), представляется уравнениями:

\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}

x

2

−x

1

x−x

1

=

y

2

−y

1

y−y

1

=

z

2

−z

1

z−z

1

Параметрическое уравнение прямой:

x=x₀+lt

y=y₀+mt

z=z₀+nt

Уравнение прямой A1A2(-1,-4,5)

\frac{x-6}{-1}= \frac{y-8}{-4}= \frac{z-2}{5} .

−1

x−6

=

−4

y−8

=

5

z−2

.

Параметрическое уравнение прямой:

x=6-t

y=8-4t

z=2+5t.

4) Уравнение плоскости А1А2А3.

x-6 y-8 z-2

-1 -4 5

-4 -4 5 = 0

(x-6)((-4)*5-(-4)*5) - (y-8)((-1)*5-(-4)*5) + (z-2)((-1)*(-4)-(-4)*(-4)) =

= - 15y - 12z + 144 = 0

Упростим выражение: - 5y - 4z + 48 = 0.

5) Уравнение прямой А4М, перпендикулярной к плоскости А1А2А3, - это высота из точки А4 на основание пирамиды.

Прямая, проходящая через точку M₀(x₀;y₀;z₀) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C).

\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C} .

A

x−x

0

=

B

y−y

0

=

C

z−z

0

.

Уравнение плоскости A1A2A3: - 5y - 4z + 48 = 0.

Уравнение А4М: \frac{x-7}{0}= \frac{y-3}{-5}= \frac{z-7}{-4}.

0

x−7

=

−5

y−3

=

−4

z−7

.

6) Уравнение плоскости, проходящей через точку перпендикулярно вектору A1A2.

Уравнение плоскости, проходящей через точку M₀(x₀, y₀, z₀) перпендикулярно вектору N = (l,m,n), имеет вид:

l(x- x₀) + m(y- y₀) + n(z- z₀) = 0

Координаты точки A4(7;3;7)

Координаты вектора A1A2(-1;-4;5)

-1(x - 7) + (-4)(y - 3) + 5(z - 7) = 0

Искомое уравнение плоскости:

-x - 4y + 5z-16 = 0.

7) Уравнение прямой А3N, параллельной прямой А1А2.

Необходимая для решения точка А3(2; 4; 7) задана по условию, а направляющий вектор для искомой прямой возьмём тот же, что для прямой А1А2, так как они параллельны: n=(-1;-4;5).

ответ: \frac{x-2}{-1}= \frac{y-4}{-4}= \frac{z-7}{5} .

−1

x−2

=

−4

y−4

=

5

z−7

.

Пошаговое объяснение:

Вот ответ

4,5(81 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ