ответ:
3. з цифр «4», «7», «9» числа. скільки можна скласти: а) трицифрових чисел так, щоб жодна з них не повторювалась; б) трицифрових чисел; в) двоцифрових чисел так, щоб жодна з них не повторювалась; г) двоцифрових чисел?
а)
б)
в)
г)
7. скільки різних дільників має число 2310?
розкладемо число 2310 на прості множники і складатимемо їх різні добутки (від 1 до 5 множників), тобто скла- датимемо різні підмножини. 2310 = 2 *3⋅5* 7⋅11 — усього п’ять множників. тоді маємо:
6. яку кількість різних натуральних чисел можна скласти з цифр 0, 2, 3, 4, щоб в кожне таке число кожна цифра входила не більше одного разу?
одноцифрових =
двоцифрових =
трицифрових =
чотирицифрових =
всього = 3+9+18+18 = 48
10. у ящику 20 деталей, серед яких 4 браковані. скількома способами можна взяти: а) 5 деталей; б) дві браковані; в) одну браковану і чотири стандартні; г) шість деталей, серед яких хоча б одна бракована; д) дві однакові за якістю?
а)
б)
в)
21. знайти ймовірність того, що дні народження 12 осіб припадуть на різні місяці року.
n = 1212
m = 12!
p(a) =
22. студент прийшов на екзамен підготувавши 20 з 25 питань, екзаменатор задав йому 3 питання. знайти ймовірність тго, що студент знає відповіді на всі питання.
аі – випадкова подія
р(а) =
= 0,497
27. на книжковій полиці випадковим чином розставляють 4 книги з економіки і три книги з ії. яка ймовірність того, що книги з одного предмета стоятимуть поруч?
p4*p3 =
30. десять осіб випадковим чином сі за круглий стіл. знайти ймовірність того, що чотири певні особи опиняться поруч.
р(а) = загальна кількість рівноможливих способів розмістити 10 осіб на 10 місцях за круглим столом дорівнює кількості перестановок із 10 елементів, тому n! = 10!
4 певні людини можна розмістити поруч 4! способами. інших 6 людей можна розмістити 6! способами. за круглим столом (10 місць) пару певних 4 людей можна розмістити 10 спосо- бами.
m = 4! *6! *10
p(a) =
32. а та в і ще 8 осіб стоять у черзі. знайти ймовірність того, що між а та в стоять три особи.
n = 2+8 = 10 r =3
p(a) =
33. з урни, в якій лежать 12 білих і 8 червоних кульок, беруть послідовно дві кульки. відомо, що перша кулька виявилась білою. яка ймовірність того, що друга кулька виявиться: а) білою; б) червоною?
а – взята біла кулька
в – взята червона кулька
якщо першою взяли білу кулю, то в урні залишилося 11 білих кулі та 8 червоних, тому
а)
пошаговое объяснение:
Даны координаты пирамиды: A1(6,8,2), A2(5,4,7), A3(2,4,7), A4(7,3,7).
1) Координаты векторов.
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора A1A2
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-6; Y = 4-8; Z = 7-2
A1A2(-1;-4;5)
A1A3(-4;-4;5)
A1A4(1;-5;5)
A2A3(-3;0;0)
A2A4(2;-1;0)
A3A4(5;-1;0)
2) Модули векторов (длина ребер пирамиды)
Длина вектора a(X;Y;Z) выражается через его координаты формулой:
a = √(X² + Y² + Z²).
Нахождение длин ребер и координат векторов.
Вектор А1A2={xB-xA, yB-yA, zB-zA} -1 -4 5 L = 6,480740698.
Вектор A2A3={xC-xB, yC-yB, zC-zB} -3 0 0 L =3.
Вектор А1A3={xC-xA, yC-yA, zC-zA} -4 -4 5 L = 7,549834435.
Вектор А1A4={xD-xA, yD-yA, zD-zA} 1 -5 5 L =7,141428429.
Вектор A2A4={xD-xB, yD-yB, zD-zB} 2 -1 0 L = 2,236067977.
Вектор A3A4={xD-xC, yD-yC, zD-zC} 5 -1 0 L = 5,099019514.
3) Уравнение прямой
Прямая, проходящая через точки A1(x1; y1; z1) и A2(x2; y2; z2), представляется уравнениями:
\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
=
z
2
−z
1
z−z
1
Параметрическое уравнение прямой:
x=x₀+lt
y=y₀+mt
z=z₀+nt
Уравнение прямой A1A2(-1,-4,5)
\frac{x-6}{-1}= \frac{y-8}{-4}= \frac{z-2}{5} .
−1
x−6
=
−4
y−8
=
5
z−2
.
Параметрическое уравнение прямой:
x=6-t
y=8-4t
z=2+5t.
4) Уравнение плоскости А1А2А3.
x-6 y-8 z-2
-1 -4 5
-4 -4 5 = 0
(x-6)((-4)*5-(-4)*5) - (y-8)((-1)*5-(-4)*5) + (z-2)((-1)*(-4)-(-4)*(-4)) =
= - 15y - 12z + 144 = 0
Упростим выражение: - 5y - 4z + 48 = 0.
5) Уравнение прямой А4М, перпендикулярной к плоскости А1А2А3, - это высота из точки А4 на основание пирамиды.
Прямая, проходящая через точку M₀(x₀;y₀;z₀) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C).
\frac{x-x_0}{A} = \frac{y-y_0}{B} = \frac{z-z_0}{C} .
A
x−x
0
=
B
y−y
0
=
C
z−z
0
.
Уравнение плоскости A1A2A3: - 5y - 4z + 48 = 0.
Уравнение А4М: \frac{x-7}{0}= \frac{y-3}{-5}= \frac{z-7}{-4}.
0
x−7
=
−5
y−3
=
−4
z−7
.
6) Уравнение плоскости, проходящей через точку перпендикулярно вектору A1A2.
Уравнение плоскости, проходящей через точку M₀(x₀, y₀, z₀) перпендикулярно вектору N = (l,m,n), имеет вид:
l(x- x₀) + m(y- y₀) + n(z- z₀) = 0
Координаты точки A4(7;3;7)
Координаты вектора A1A2(-1;-4;5)
-1(x - 7) + (-4)(y - 3) + 5(z - 7) = 0
Искомое уравнение плоскости:
-x - 4y + 5z-16 = 0.
7) Уравнение прямой А3N, параллельной прямой А1А2.
Необходимая для решения точка А3(2; 4; 7) задана по условию, а направляющий вектор для искомой прямой возьмём тот же, что для прямой А1А2, так как они параллельны: n=(-1;-4;5).
ответ: \frac{x-2}{-1}= \frac{y-4}{-4}= \frac{z-7}{5} .
−1
x−2
=
−4
y−4
=
5
z−7
.
Пошаговое объяснение:
Вот ответ
Набираем воду в 5 литровую банку, затем переливаем в 7 литровую банку, потом набираем еще раз 5 литровую банку, переливаем опять, в 5 литровой банке остается 3 литра, из 7 литровой выливаем воду, заливаем оставшиеся 3 литра в 7 литровую, набираем еще раз 5 литровую, переливаем в 7 литровую, остается 1 литр в 5 литровой банке, выливаем этот литр в 7 литровую банку и доливаем еще 5 литров воды