М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mixa342
mixa342
24.08.2020 05:21 •  Математика

Длина дороги — 56 км.
Заасфальтировали 37 дороги.
Определи, сколько километров дороги заасфальтировали.

👇
Ответ:
Ilya2569
Ilya2569
24.08.2020

37 × 56 = 2.072км - если 37 дорог иметь ввиду как штук

4,6(41 оценок)
Открыть все ответы
Ответ:
Karamelka3467
Karamelka3467
24.08.2020
1. Чтобы число делилось на 3, в сумме его цифры должны быть равны числу, которое делится на 3.
7+6+3=16, 7+6+3+2=18 делится на 3. Следовательно, добавляем 2, получается 7632.
2. Чтобы число делилось на 6, в сумме его цифры должны быть равны числу, которое делится и на 2, и на 3.
7+6+3=16, 7+6+3+2=18 делится и на 2, и на 3. Следовательно, добавляем 2, получается 7632.
3. Чтобы число делилось на 19, его десятки, сложенные с удвоенным числом единиц, делится на 19.
763*, сумма десятков=763, а теперь надо вместо * взять число и умножить его на 2, чтобы в сумме они делились на 19. Например, возьмем число 8, 2*8=16. Тогда, 763+16=779, делится на 19. Следовательно, 7638.
4,6(23 оценок)
Ответ:

Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ((3x)^{2}-y^{2})^{2}; В следующих двух слагаемых вынесем общий множитель "40": 40(9x^{2}+y^{2})=40((3x)^{2}+y^{2}); В итоге получим следующее уравнение: ((3x)^{2}-y^{2})^{2}-40((3x)^{2}+y^{2})+400=0. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо (3x)^{2}-y^{2} будет стоять (3x)^{2}+y^{2}; Это приведет к тому, что придется убавить 2\times 18x^2y^2=4(3xy)^{2}; В итоге: ((3x)^{2}+y^{2})^{2}-40((3x)^{2}+y^{2})+400= 4(3xy)^{2}; Слева стоит квадрат суммы. Уравнение примет вид: ((3x)^{2}+y^{2}-20)^{2}=(6xy)^{2} \Leftrightarrow ((3x)^{2}+y^{2}-20+6xy)((3x)^{2}+y^{2}-20-6xy)=0; Сворачивая еще раз: ((3x+y)^{2}-20)((3x-y)^{2}-20)=0; Получаем серию прямых: \pm 3x+\sqrt{20},\; \pm3x-\sqrt{20}; А теперь приступим к рассмотрению первого уравнения.

Это уравнение задает круг с центром в точке (0, 0) и радиусом \sqrt{2} ; Рассмотрим прямую y=3x+\sqrt{20}; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников. \frac{\sqrt{20}\times 3}{3\times 10\sqrt{2}}=\frac{r}{\sqrt{20}} \Leftrightarrow r=\sqrt{2}; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5} } ); Ну а все решения:

(\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; \frac{\sqrt{5}}{5}),\; (-\frac{3\sqrt{5}}{5},\; -\frac{\sqrt{5}}{5})

4,6(12 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ