Извините, невнимательно прочла - они едут не один, а 5 часов, тогда
ответ: 120 раз (а не 24, как я раньше указала)
1.Пусть скорость 1 велосипедиста v1 (12км/ч ) второго - v2 (36 км/ч)
2. Посчитаем, сколько времени (t1) нужно 1 велосипедисту, чтобы пройти расстояние АВ
АВ = 1 км = t1*v1 = t1 * 12 км/ч
t1 = 1/12 ч
3. 2 велосипедист проходит расстояние АВ за 1/36 ч , это в 3 раза меньше, чем 1/12ч - время 1 велосипедиста
4. значит, пока 1вел. доедет из А в В в первый раз, 2вел. проедет расстояние в 3 раза больше - т.е. АВ, ВА, АВ - за это время он успеет 2 раза встретить 1вел (когда будет двигаться из В в А и потом, когда догонит его из А в В) - причем, второй раз будет именно в точке В
5. после этого и 1вел, и 2 вел повернут и поедут из В в А.
6. точно также 2вел будет ехать в 3 раза быстрее и сумеет еще два раза встретить 1 вел - последний раз в точке А - т.е. всего с начала пути они встретились 4 раза.
7. при этом, 1вел пройдет расстояние АВ+ВА=2 км за время t1*2=2*1/12=1/6 ч.
8. Таким образом 1вел нужно пройти еще 6 полных пути из АВ и обратно, чтобы получить время - 1 ч.
9. За каждый путь 1вела туда-обратно он будет встречать 4 раза 2вела, путей - 6, значит
10. Итого они встретятся 6*4 = 24 раза (не включая первый, но включая послений раз) за 1 час и 24* 5 = 120 раз за 5 часов.
Чтобы узнать содержимое всех коробок, достаточно вынуть всего один шар. Ключ к решению кроется в том, что ни одна из табличек не соответствует содержимому коробки. Вынимаем шар из коробки с надписью ЧБ. Допустим, что этот шар – черный. Тогда уже ясно, что второй шар в коробке тоже черный, иначе табличка была бы правильной. Коробку с двумя черными шарами мы отыскали, посмотрим теперь на коробку с надписью ББ. В ней нет двух белых шаров (ведь табличка неправильная), в ней нет двух черных шаров (коробка с черными шарами уже найдена). Значит, в этой коробке один белый шар и один черный. Для последней коробки (с табличкой ЧЧ) остается только один вариант: в ней два белых шара.Если шар, вынутый из коробки ЧБ, окажется не черным, а белым, задача решается аналогично.
Мы вынимали шар из коробки ЧБ, и это было единственно правильным решением. Допустим, например, что мы вынули шар из коробки с надписью ЧЧ. Если этот шар черный, нам удастся справиться с задачей (проверьте это самостоятельно). А вот если шар окажется белым, ничего не получится.
4
Пошаговое объяснение:))