В треугольнике ABC c тупым углом BAC проведены высоты BB1 и CC1. Докажите, что треугольники B1AC1 и ABC подобны.
смотрим рисунок во вложении та как треугольники ВСС1 и ВСВ1 - прямоугольные, то их можно описать окружностью, диаметр которой совпадает с общей гипотенузой ВС угол ВС1В1 и угол ВСВ1 - опираются на одну и ту же дугу окружности значит угол ВС1В1 и угол ВСВ1 - равны а значит угол АС1В1 и угол ВСА - равны
угол С1В1С и угол С1ВС - опираются на одну и ту же дугу окружности значит угол С1В1С и угол С1ВС - равны а значит угол С1В1А и угол АВС - равны
так как угол АС1В1 и угол ВСА - равны так как угол С1В1А и угол АВС - равны так как угол ВАС и угол В1АС1 - равны
ВВ1 / СС1 = АВ1 / АС1 = АВ / АС (гипотенузы всегда пропорциональны...) последнее равенство можно переписать так: АВ1 / АВ = АС1 / АС ведь в пропорции произведение крайних членов = произведению средних членов) значит произведение средних членов можно записать АС1*АВ = АВ*АС1 ведь от перестановки сомножителей произведение не меняется... т.е. равенства тождественно верны) но второе равенство читается так: стороны треугольника АВ1С1 пропорциональны сторонам треугольника АВС (две стороны), но углы между этими сторонами равны как вертикальные- имеем второй признак подобия треугольников... треугольники АВ1С1 и АВС подобны
1)800 км-20 %
100% - 800 х 5=4000 км
ответ:4000 км
2) 1200 - 100%
1200/12 = 10%
ответ: 10%
3)2800-100%
Липы - 40%
Ищем 1 % - 2800/100=28
Ищем кол_во лип- 28 х 40=1120
ответ:1120
х-это умножить
/- разделить
Пошаговое объяснение: