1) Если параболы имеет вершину в начале координат, то каноническое уравнение параболы имеет вид у² = 2рх.
А уравнение директрисы х + (р/2) = 0.
По заданию уравнение директрисы x+3=0 или х + (6/2) = 0.
Значит, параметр р = 6.
Уравнение параболы у² = 2*6х или у² = 12х.
2) Каноническое уравнение гиперболы имеет вид (x²/a²) - (y²/b²) = 1.
Но у неё действительная ось на оси Ох.+
Для гиперболы с действительной осью на оси Оу уравнение имеет вид -(x²/a²) + (y²/b²) = 1.
По заданию b = 4√5/2 = 2√5.
е = с/b.
Тогда c = e*b=(√5/2)*2√5 = 5.
a² = c² - b² = 25 - 20 = 5.
Уравнение гиперболы -(x²/(√5)²) + (y²/(2√5)²) = 1.
3) а = 10/2 = 5.
с = е*а = 0,6*5 = 3.
b² = a² - c² = 25 -9 = 16 = 4².
Уравнение эллипса (x²/5²) + (y²/4²) = 1.
ответ:Воспользуемся формулой Лапласа
вероятность, что событие наступит k раз при n испытаниях
P(k) = 1/корень (npq) * ф [ (k-np)/корень (npq) ], где
p - вероятность события, q = 1-p, ф - функция Гаусса
ф (x) = 1/корень (2pi) * e^(-x^2 / 2)
n = 1600, k = 1200, p = 0.8, q = 0.2
np = 1280, корень (npq) = 16
x = (k-np)/корень (npq) = -80 / 16 = -5
ф = 1/корень (2pi) * e^(-x^2 / 2) = 0.3989 * e^(-12.5) = 0,3989*3,731*10^(-6) = 1.488*10^(-6)
P(1200) = 1/16 * 1.488*10^(-6) = 0.93*10^(-7)
вероятность ничтожно мала - меньше одной десятимиллионной
Пошаговое объяснение:Воспользуемся формулой Лапласа
вероятность, что событие наступит k раз при n испытаниях
P(k) = 1/корень (npq) * ф [ (k-np)/корень (npq) ], где
p - вероятность события, q = 1-p, ф - функция Гаусса
ф (x) = 1/корень (2pi) * e^(-x^2 / 2)
n = 1600, k = 1200, p = 0.8, q = 0.2
np = 1280, корень (npq) = 16
x = (k-np)/корень (npq) = -80 / 16 = -5
ф = 1/корень (2pi) * e^(-x^2 / 2) = 0.3989 * e^(-12.5) = 0,3989*3,731*10^(-6) = 1.488*10^(-6)
P(1200) = 1/16 * 1.488*10^(-6) = 0.93*10^(-7)
вероятность ничтожно мала - меньше одной десятимиллионной