М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Comalia
Comalia
29.10.2022 19:49 •  Математика

Найдите число, 17% которого равны 318​

👇
Ответ:
shydik37
shydik37
29.10.2022

1870целых10/17

Пошаговое объяснение:

318*100/17=1870целых10/17

4,7(88 оценок)
Открыть все ответы
Ответ:
гвониха
гвониха
29.10.2022

Справочник

Тригонометрия

Статью подготовили специалисты образовательного сервиса Zaochnik.

Как работает сервис

Наши социальные сети

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Содержание:

Синус, косинус, тангенс и котангенс. Определения

Угол поворота

Числа

Тригонометрические функции углового и числового аргумента

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Синус, косинус, тангенс и котангенс: основные формулы

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (

sin

α

) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (

cos

α

) - отношение прилежащего катета к гипотенузе.

Тангенс угла (

t

g

α

) - отношение противолежащего катета к прилежащему.

Котангенс угла (

c

t

g

α

) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от

до

+

.

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Угол поворота

Начальная точка

A

с координатами (

1

,

0

) поворачивается вокруг центра единичной окружности на некоторый угол

α

и переходит в точку

A

1

. Определение дается через координаты точки

A

1

(

x

,

y

).

Синус (sin) угла поворота

Синус угла поворота

α

- это ордината точки

A

1

(

x

,

y

).

sin

α

=

y

Косинус (cos) угла поворота

Косинус угла поворота

α

- это абсцисса точки

A

1

(

x

,

y

).

cos

α

=

х

Тангенс (tg) угла поворота

Тангенс угла поворота

α

- это отношение ординаты точки

A

1

(

x

,

y

) к ее абсциссе.

t

g

α

=

y

x

Котангенс (ctg) угла поворота

Котангенс угла поворота

α

- это отношение абсциссы точки

A

1

(

x

,

y

) к ее ординате.

c

t

g

α

=

x

y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (

0

,

1

) и (

0

,

1

). В таких случаях выражение для тангенса

t

g

α

=

y

x

просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов

α

.

Тангенс определен для всех углов, кроме

α

=

90

°

+

180

°

k

,

k

Z

(

α

=

π

2

+

π

k

,

k

Z

)

Котангенс определен для всех углов, кроме

α

=

180

°

k

,

k

Z

(

α

=

π

k

,

k

Z

)

При решении практических примеров не говорят "синус угла поворота

α

". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

4,6(20 оценок)
Ответ:
motakina12
motakina12
29.10.2022

1:2 целых 1/2

2: 1целая 5/9

3:26

4:71 целая 2/4

Пошаговое объяснение:

1:12(13/24-7/12-1/6)=

12(13/24-14/24-4/24)=

12×(-5/24)=

12/1×(5/24)=

24и12 сокращаются получается

1/1×5/2=5/2=2 1/2

2:(2/3-3/7):10/27=

(14/21-9/21):10/27=

5/21:10/27=

5и10 скоращаются на 5

21и27 сокращаются на 3

1/7:2/9=

7/1•2/9=14/9

14/9= 1 5/9

3:(2 1/16-1 1/14)•28=

(32/16-15/14)•28=

(2/1-15/14)•28=

(28/14-15/14)•28=

13/14•28=

13/14•28/1=

28 и 14 сокращаются на 14

13/1•2/1=26/1

26/1=26

4:4 1/4+5/2•7,5=

17/4+5/2•75/10=

5 и 10 сокращаются на 5

17/4+1/2•75/1

17/4+75/2=

17/4+150/4=167/4

167/4=41 2/4

/Знак деления если что ( дробная черта)

4,7(79 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ