Положим так. Если А1 танцевал с Б1, а А2 танцевал с Б2, то А1 танцевал с Б2, а А2 танцевал с Б1. Есть какое-то множество девочек М1, с которыми танцевал мальчик А1; и множество девочек М2, с которыми танцевал мальчик Б2. Оба множества непусты ввиду первых двух предложений.
Гипотеза указывает, что мальчик А1 танцевал с любой девочкой из М2. Множество М1 можно пополнять до тех пор, пока остаются другие нерассмотренные мальчики помимо А1; и если множество М1 ещё не включает всех девочек, то, ввиду предложения о наличии затанцованного мальчика для каждой девочки, такие мальчики остаются. Значит, А1 танцевал со всеми девочками, противоречие.
Пошаговое объяснение:
У нас есть два одинаковых игральных кубика. На первом кубике может выпасть любое число от 1-6, на втором тоже может выпасть любое* число от 1-6.
Если мы бросим один кубик, то количество равновероятных результатов n равно: n=6
Если бросать два кубика, то количество результатов m станет: 6*6=m=36, так как кубики одинаковые и число вариантов становиться в 6 раз больше.
Из них одинаковое число очков выпадет только в 6 случаях (у кубика 6 граней)
Значит, вероятность того, что на обеих костях выпадет одинаковое число очков, равна:
6/36 = 1/6, близко 16,6%
Правильный ответ: 1/6, близко 16,6%.