Наименьшее общее кратное (НОК) - это наименьшее число, которое делится на все данные числа. Для его нахождения разложим их на простые множители и составим НОК, чтобы ВСЕ множители КАЖДОГО числа имелись в этом наборе. (НОК - это произведение таких множителей). Если НОК найдено правильно, оно делится на все данные числа без остатка. а). 24 = 2*2*2*3; 72 = 2*2*2*3*3; НОК(24;72) = 2*2*2*3*3 = 72; 72:24=3; 72:72=1 б). 15 = 3*5; 31 = 1*31; НОК(15;31) = 3*5*31 = 465; 465:15 =31; 465:31=15 в). 252 = 2*2*3*3*7; 378 = 2*3*3*3*7; НОК (252;378) = 2*2*3*3*3*7 = 756; 756:252=3; 756:378=2 г). 60 = 2*2*3*5; 130 = 2*5*13; 195 =3*5*13; НОК(60;130;195) = 2*2*3*5*13 = 780; 780:60=13; 780:130 = 6; 780:195=4
Пошаговое объяснение:
найдем производную и приравняем к нулю (это будет экстремум функции)
3х^2-27=0 ---> x^2=9
х1=3; х2=-3
найдем вторую производную, чтобы знать максимум это или минимум
y"=6x
в наш промежуток входит только точка 3
(учитываем наш промежуток [-1; 4] )
подставляем 3*6=18, значит это минимум, т. е. получаем что от -1 до 3 убывает функция, от 3 до 4 возрастает.
Теперь в формулу функции f(x)= x^3 -27x
надо подставить конечные значения интервала и точки минимума
f (-1) = -1 +27=26
f (3) = -54
f (4) = -44
получили что
f (-1) = 26 максимальное значение при х=-1
f (3) = -54 минимальное значение при х= 3 на промежутке [-1; 4]