М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
trololoshka25
trololoshka25
25.05.2020 05:09 •  Математика

Длина стебля пшеницы нормально распределенная случайная величина Х. Известно, что М(Х) = 80 см, s(Х) = 10 см. Найти вероятности того, что значения случайной величины принадлежат интервалам (70; 90) и (50; 70).

👇
Ответ:
yanbalan19
yanbalan19
25.05.2020
Привет! Конечно, я готов выступить в роли твоего школьного учителя и объяснить тебе, как решить эту задачу.

Итак, у нас есть случайная величина Х, которая описывает длину стебля пшеницы. Нам дано, что математическое ожидание (М(Х)) равно 80 см, а среднеквадратическое отклонение (s(Х)) равно 10 см.

1. Для начала, давай определимся с тем, что значит "нормально распределенная случайная величина". Вероятно, тебе уже известно, что нормальное распределение (или гауссово распределение) является одним из самых распространенных в статистике и имеет форму колокола. В этом распределении симметрично расположены значения случайной величины относительно ее среднего значения.

2. Теперь, чтобы найти вероятность того, что значения случайной величины Х попадают в интервал (70; 90), нам необходимо использовать таблицу стандартного нормального распределения или стандартный нормальный закон распределения.

3. Для этого нам нужно привести нашу случайную величину Х с ее средним (80 см) и среднеквадратическим отклонением (10 см) к стандартной нормальной случайной величине Z.

4. Для этого мы можем использовать формулу стандартизации: Z = (X - М(Х)) / s(Х), где X - значение случайной величины.

5. Применим эту формулу к нашему первому интервалу (70; 90).
a. Для нижней границы интервала (70):
Z1 = (70 - 80) / 10 = -1.
b. Для верхней границы интервала (90):
Z2 = (90 - 80) / 10 = 1.

6. Теперь мы можем использовать таблицу стандартного нормального распределения или калькулятор, чтобы найти вероятность P(Z1 < Z < Z2) для интервала (70; 90). Эта вероятность будет показывать, какая часть площади под кривой нормального распределения будет находиться между значениями Z1 и Z2. Эту вероятность можно найти, вычислив разницу между двумя вероятностями: P(Z < Z2) - P(Z < Z1).

7. Для второго интервала (50; 70) проведи то же самое вычисление для нижней (50) и верхней (70) границ интервала.

Таким образом, используя формулу стандартизации и таблицу стандартного нормального распределения, ты сможешь найти вероятности того, что значения случайной величины Х принадлежат интервалам (70; 90) и (50; 70). Если у тебя возникнут еще вопросы или что-то будет непонятно, обращайся ко мне.
4,4(81 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ