В третьей урне будет 2 шара. Введем гипотезы: H1 - в 3 урне 2 белых шара, H2 - в 3 урне 2 черных шара, H3 - в 3 урне черный и белый шары. Посчитаем вероятности гипотез: p(H1) = (2/5)*(4/6) = 4/15 p(H2) = (3/5)*(2/6) = 1/5 p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15 Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1 Событие A заключается в том что из 3 урны достали белый шар. Посчитаем условные вероятности p(A|H1) = 1, из двух белых выбирают белый p(A|H2) = 0, из двух черных выбирает белый p(A|H3) = 1/2, из черного и белого выбирают белый Полная вероятность события A: p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15 ответ: 8/15
Два треугольника являются равными если : 1) все стороны одного равны всем сторонам другого Тот факт, что прямоугольники треугольные здесь нам никак не 2) у них равны две стороны и угол между ними В прямоугольном треугольнике один из углов гарантированно равен 90 градусов, т.е. при равенстве прилежащих к нему сторон, а именно катетов, прямоугольные треугольники будут равными 3) при равенстве двух углов и стороны между ними Опять же с учетом равенства одного из углов 90 градусов, получаем, что для прямоугольных треугольников достаточно чтобы были равны один из катетов и прилежащий к нему угол, но НЕ прямой.
p(H2) = (3/5)*(2/6) = 1/5
p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15
Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1
Событие A заключается в том что из 3 урны достали белый шар.
Посчитаем условные вероятности
p(A|H1) = 1, из двух белых выбирают белый
p(A|H2) = 0, из двух черных выбирает белый
p(A|H3) = 1/2, из черного и белого выбирают белый
Полная вероятность события A:
p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15
ответ: 8/15