Весь путь ледокола = 1 (целое) 1/2 = 0,5 в десятичных дробях 3/5 это 0.6 1 день - 0,5 пути 2 день - 0,6 * (1 - 0,5) 3 день - 24 км
1) 1 - 0,5 = 0,5 - оставшийся путь; 2) 0,6 * 0,5 = 0,3 пути во второй день 3) 1 - (0,5 + 0,3) = 1 - 0,8 = 0,2 пути в третий день 0,2 пути = 24 км. Находим целое по его части 24 : 0,2 = 120 (км) - длина пути, пройденного ледоколом за три дня ответ: 120 км.
Проверка: 1) 120 * 0,5 = 60 (км) - в первый день 2) 0,6 * (120 - 60) = 0,6 * 60 = 36 (км) - во второй день 3) 60 + 36 + 24 = 120 (км) - весь путь за три дня.
Пусть цифры данного числа х,у, z, t 1000x+100y+10z+t-1000t-100z-10y-x=909 999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем 111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1 x=t+1, z=y+1 По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число t+1+y+y+1+t=9n 2(t+y+1)=9n, значит n=2, t+y=8 Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t 8 1 2 7 7 2 3 6 6 3 4 5 5 4 5 4 4 5 6 3 3 6 7 2 2 7 8 1 9 0 1 8 Итого 8 чисел удовлетворяют условию задачи
от 21 до 24 (21;24)л