1) Пусть в первый день отпустили (х) т угля, тогда во второй день отпустили (1,3х) т угля. Известно. что во второй день угля отпустили больше на (1,3х - х) т угля, или на 12 т. Составим уравнение и решив его найдем количество угля, проданное в первый и во второй дни. 1,3х - х = 12; 0,3 х = 12; х = 12 : 0,3; х = 40 (т) - в первый день; 1,3х = 40 * 1,3 = 52 (т) - во второй день. 2) Сколько тонн угля продали за первые два дня? 40 + 52 = 92 (т). 3) Сколько угля продали в третий день? Переведем проценты в десятичную дробь. 37,5 % = 0,375 Чтобы найти процент от числа, надо это число умножить на десятичную дробь, выражающую проценты. 92 * 0,375 = 34,5 (т) ответ. 40 т, 52 т, 34,5 т.
Даны координаты вершин треугольника ABC: А(3; 3); В(–3; –3); С(3; 5).
Найти:
1) Периметр треугольника.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √72 = 6√2 ≈ 8,48528.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √100 = 10.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √4 = 2.
Периметр равен 12 + 6√2 ≈ 20,48528.
2) Уравнения сторон AB и BC.
АВ : Х-Ха = У-Уа х - 3 = у - 3
Хв-Ха Ув-Уа -6 -6,
х - у = 0 общее уравнение,
у = х уравнение с угловым коэффициентом (к = 1).
ВС : Х-Хв = У-Ув х + 3 = у + 3
Хс-Хв Ус-Ув 6 8, сократить на 2:
4х + 12 = 3у + 9,
4х - 3у + 3 = 0.
у = (4/3)х + 1.
3) Уравнение высоты AD.
к(АД) = -1/к(ВС) = -1/(4/3) = -3/4.
у = (-3/4)х + в. Подставим точку А(3; 3): 3 = (-3/4)*3 + в, в = 3 + (9/4) = 21/4.
Уравнение АД: (-3/4)х + (21/4).
4) Угол ABC.
cos В= АВ²+ВС²-АС² = 0,98995.
2*АВ*ВС
B = 0,141897 радиан,
B = 8,130102 градусов.
5) Площадь S треугольника ABC равна:
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 6.
Площадь можно найти по формуле Герона: S = √(p(p-a)(p-b)(p-c)).
Полупериметр p = 10,24264. S = 6.
6) Сделать чертеж - построить точки А, В и С по координатам и соединить отрезками.