Пусть НОК = К, НОД = D, тогда, по определению
а = К*A, b = K*В, D = K*A*B (где А, В - некие натуральные взаимно простые числа)
K*A*B - K = 29 по условию => К*(А*В-1) = 29 (1)
29 - простое число, равное произведению двух множителей. Значит, возможны два случая:
1) К=29, A*B-1=1 => A*B=2 => A=2, B =1 (так как а>b). Отсюда находим первую пару: а = 58, b = 29
2) К=1, А*В-1=29 => A*B=30=2*3*5. Выпишем все пары делителей, как возможные варианты (помним, что a>b):
А=30 В=1
А=15 В=2
А=10 В=3
А=6 В=5
Так как К = 1, то это остальные пары a,b
Пошаговое объяснение:
Найдем нули числителя:
x^3-x^2+x=x(x^2-x+1).
Найдем нули выражения в скобках:
x^2-x+1=0,
D=(-1)^2-4*1*1=-3 - действительных корней нет. Это значит, что выражение (x^2-x+1) на знак левой части неравенства не повлияет, и можно смело на него разделить всю дробь. То есть будет x/(x+8)<0.
Нули числителя: x=0,
Нули знаменателя: x=-8.
Решением неравенства будет интервал x∈(-8;0), поскольку при x < -8 левая часть неравенства больше 0; при x=-8 значение x/(x+8) не определено; при x >= 0 x/(x+8) >=0