1) AC = 3 см, cos A = 1/4
2) BC = 5 см, sin A = 2/3
3) AC = 8 см, tg B = 3
Пошаговое объяснение:
1)Если <С=90°, то АС и ВС - катеты, а АВ- гипотенуза. Косинус угла - это отношение прилежащего к углу катета к гипотенузе, используем эту формулу для нахождения гипотенузы АВ:
\begin{gathered} \cos(a) = \frac{АС}{АВ} \\ \end{gathered}
cos(a)=
АВ
АС
AB= \frac{AC}{ \cos(A) } =3÷ \frac{1}{4} = 3×4=12смAB=
cos(A)
AC =3÷ 41 =3×4=12см
Теперь найдём ВС по теореме Пифагора:
ВС²=АВ²–АС²=12²–3²=144–9=135; ВС=√135=3√15см
ответ: АВ=12см, ВС=3√15см
2) синус - это отношение противолежащего от угла катета к гипотенузе поэтому
\sin(А) = \frac{ВС}{АВ}sin(А)=
АВ
ВС
тогда АВ=
AB = \frac{BC}{ \sin(A) } = 5 \div \frac{2}{3} = 5 \times \frac{3}{2} = \frac{15}{2} = 7.5смAB=
sin(A)
BC=5÷ 32 =5× 23 = 215=7.5см
теперь найдём АС по теореме Пифагора:
АС²=АВ²–ВС²=7,5²–5²=56,25–25=31,25; АС=√31,25=
=2,5√5см
ответ: АВ=7,5см, АС=2,5√5см
3) тангенс - это отношение противолежащего от угла катета к прилежащему:
\tan(В) = \frac{АС}{ВС}tan(В)=
ВС
АС
ВС = \frac{АС}{ \tan(В) } = \frac{8}{3} смВС=
tan(В)
АС = 38 см
Теперь найдём АВ по теореме Пифагора:
АВ²=АС²+ВС²=8 {}^{2} +( \frac{8}{3} ) {}^{2} = 64 + \frac{64}{9} = \frac{576 + 64}{9} = \frac{640}{9} \:; АВ = \sqrt{ \frac{640}{9} } = \frac{ 8\sqrt{1 0 } }{3} см8 2 +( 38 )2 =64+ 964 = 9576+64 = 9640 ;АВ=9640 = 3810см
ответ: АВ=8√10/3см, ВС=8/3см
1000, 993, 986, 979, 972, 965, 958, 951, 944, 937, 930, 923, 916, 909, 902, 895, 888, 881, 874, 867, 860, 853, 846, 839, 832, 825, 818, 811, 804, 797, 790, 783, 776, 769, 762, 755, 748, 741, 734, 727, 720, 713, 706, 699, 692, 685, 678, 671, 664, 657, 650, 643, 636, 629, 622, 615, 608, 601, 594, 587, 580, 573, 566, 559, 552, 545, 538, 531, 524, 517, 510, 503, 496, 489, 482, 475, 468, 461, 454, 447, 440, 433, 426, 419, 412, 405, 398, 391, 384, 377, 370, 363, 356, 349, 342, 335, 328, 321, 314, 307, 300, 293, 286, 279, 272, 265, 258, 251, 244, 237, 230, 223, 216, 209, 202, 195, 188, 181, 174, 167, 160, 153, 146, 139, 132, 125, 118, 111, 104, 97, 90, 83, 76, 69, 62, 55, 48, 41, 34, 27, 20, 13, 6