получается ломанная линия
80 см < P < 128 см
Пошаговое объяснение:
1) Теорема о существовании треугольника: треугольник существует тогда и только тогда, когда сумма длин двух его сторон больше длины третьей стороны.
2) Обозначим третью сторону х. Тогда условию существования треугольника соответствуют неравенства:
х + 24 > 40 (1)
х < 40 + 24 (2)
3) Из (1) следует, что х > 16 см; следовательно, периметр треугольника:
Р > 16 + 40 + 24,
Р > 80 см.
4) Из (2) следует, что х < 64 см; следовательно, периметр треугольника
Р < 64 + 40 + 24
Р < 128 см.
5) Таким образом:
80 см < P < 128 см
ответ: 80 см < P < 128 см
ПРИМЕЧАНИЕ
Зная диапазоны изменения периметра треугольника, можно рассчитать следующие его параметры:
1) диапазоны изменения площади (расчет площади - по формуле Герона);
2) диапазоны изменения каждой из трёх его высот;
3) диапазоны изменения радиусов вписанной и описанной окружности;
4) диапазоны изменения каждого из 3-х его углов.
Пошаговое объяснение:
а) Первый Пусть из некоторого города A нельзя попасть в некоторый город B по железной дороге. Рассмотрим множество M всех городов, в которые можно попасть из города A по железной дороге. Множество городов, не входящих в M, обозначим N. Множество N непусто, поскольку в нём содержится город B. Ясно, что из городов множества M нельзя попасть в города множества N по железной дороге.
Докажем, что из каждого города в любой другой можно попасть авиарейсами.
Если один из городов принадлежит M, а другой – множеству N, то между ними есть прямая авиалиния.
Пусть два города принадлежат M. Тогда из первого города можно попасть авиарейсом в некоторый город множества N, а оттуда (также самолётом) – во второй город.
Аналогично рассматривается случай, когда оба города принадлежат N.
Второй См. г).
б) См. в).
в) Пусть для города X это не так: есть город A, в который из X нельзя долететь за два "хода", и город B, в который из X нельзя доехать на поезде за два "хода" (значит, X и B связаны авиалинией). Пусть A и B связаны авиалинией. Тогда в X из A в можно добраться по воздуху с пересадкой в B. Противоречие.
Аналогично к противоречию приводит и предположение о том, что A и B связаны железной дорогой.
г) Пусть из A в нельзя долететь за три "хода", а из C в D нельзя доехать на поезде за три "хода". Тогда A и B связаны железной дорогой, а C и D – авиалинией.
Пусть A и C связаны железной дорогой. Тогда B и D связаны авиалинией (иначе был бы ж/д маршрут CABD), а A и D – железной дорогой (иначе есть авиамаршрут BDA). Противоречие: есть ж/д маршрут CAD.
Аналогично к противоречию приводит и предположение о том, что A и C связаны авиалинией.
сломаная линия получилась у меня
Пошаговое объяснение: