На пост председателя школьного совета претендовали два кандидата в голосовании приняли участие 96 человек голоса между кандидатами распределились в отношении 3: 5 сколько голосов получил победитель
ПОХИЛI ТА ЇХ ПРОЕКЦIЇ. ТЕОРІЯ. РОЗВ'ЯЗОК ЗАДАЧ НА ОБЧИСЛЕННЯ
Теорія:
Перпендикуляром, проведеним з деякої точки до заданої прямої, називається відрізок, що лежить на прямій, перпендикулярній до заданої прямої і з кінцями в заданій точці, і точки, що лежить на заданій прямій. Кінець перпендикуляра, що лежить на прямій, до якої він проведений, називається основою перпендикуляра.
Похила — будь-який відрізок, проведений із точки на пряму, відмінний від перпендикуляра. Кінець похилої, що лежить на прямій, до якої він проведений, називається основою похилої.
Відрізок, що сполучає кінець перпендикуляра і похилої до прямої, проведених з однієї точки, називається проекцією похилої на пряму.
Якщо до прямої з однієї точки проведені перпендикуляр і похилі, то будь-яка похила більша від перпендикуляра.
Рівні похилі мають рівні проекції.
Якщо проекції похилих рівні, то рівні і похилі.
Із двох похилих більшою є та, у якої більша проекція на пряму.
Більшій похилій відповідає більша проекція і навпаки.
Пусть a и b - стороны левого верхнего прямоугольника, тогда b и c - стороны правого верхнего прямоугольника, c и d - стороны правого нижнего прямоугольника, b и d - левого нижнего прямоугольника. Тогда: Р₁=2(a+b)=24 Р₂=2(a+c)=28 Р₃=2(c+d)=16 Р₄=2(b+d) - ? Отнимем третий периметр от второго. Получим: P₂₃=Р₂-Р₃=28-16=12 С другой стороны: P₂₃=Р₂-Р₃=2(a+c)-2(c+d)=2(a+c-c-d)=2(a-d) Значит, 2(a-d)=12 Теперь отнимем полученное от первого периметра: Р₁-P₂₃=24-12=12 С другой стороны: Р₁-P₂₃=2(a+b)-2(a-d)=2(a+b-a+d)=2(b+d) Значит, 2(b+d)=12, что и требовалось найти.
ПОХИЛI ТА ЇХ ПРОЕКЦIЇ. ТЕОРІЯ. РОЗВ'ЯЗОК ЗАДАЧ НА ОБЧИСЛЕННЯ
Теорія:
Перпендикуляром, проведеним з деякої точки до заданої прямої, називається відрізок, що лежить на прямій, перпендикулярній до заданої прямої і з кінцями в заданій точці, і точки, що лежить на заданій прямій. Кінець перпендикуляра, що лежить на прямій, до якої він проведений, називається основою перпендикуляра.
Похила — будь-який відрізок, проведений із точки на пряму, відмінний від перпендикуляра. Кінець похилої, що лежить на прямій, до якої він проведений, називається основою похилої.
Відрізок, що сполучає кінець перпендикуляра і похилої до прямої, проведених з однієї точки, називається проекцією похилої на пряму.
Якщо до прямої з однієї точки проведені перпендикуляр і похилі, то будь-яка похила більша від перпендикуляра.
Рівні похилі мають рівні проекції.
Якщо проекції похилих рівні, то рівні і похилі.
Із двох похилих більшою є та, у якої більша проекція на пряму.
Більшій похилій відповідає більша проекція і навпаки.