Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле:
Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Вообще это ЛДУ 2-го порядка с переменными коэффициентами. Вводом переменной z=y' приходим к уравнению x*z'-z-x^2=0 = z'-z/x-x=0 - ЛДУ 1-го порядка. Пусть z=u*v ->u'*v+u*v' -u*v/x-x=0, v(u'-u/x)+u*v'-x=0, u'-u/x=0, du/u=dx/x, ln(u)=ln(x), u=x, x*v'=x, v'=1,v=x+C1, z=x*(x+C1)=x^2+C1*x. Проверка: x*z'-z-x^2=2*x^2+C1*x-x^2-C1*x-x^2=0, так что z найдено верно. Тогда y=x^3/3+C1*x^2/2. Проверка: y'=x^2+C1*x, y''=2*x+C1, x*y''-y'=2*x^2+C1*x-x^2-C1*x=x^2, так что у найдена верно. ответ: y=x^3+C1*x^2/2+C2
В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС.
Находим стороны треугольника SDC:
DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549.
SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6.
Высота из вершины S является высотой пирамиды SО.
Находим её по формуле:
Подставим значения:
a b c p 2p
16.155494 15 6 18.577747 37.15549442
и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145.
Площадь основания пирамиды находим по формуле Герона:
a b c p 2p S
17 17 10.583005 22.291503 44.58300524 85.48684109.
Площадь основания можно выразить так:
S = 85.48684109 = √7308 = 6√(7*29).
Тогда получаем объём пирамиды:
V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.