А) пусть AK : KB = 1 : n AK = x, BL = y, тк AB = CD и BC = AD имеем: cm = ak = x kb = md = nx nd = bl = y lc = an = ny ΔAKN = ΔLME по 1 признаку (ak = cm, an = lc, ∠kan = ∠lcm) => kn = lm аналогично получаем kl = nm Таким образом, в 4-хугольнике klmn противоположные стороны равны => этот 4-хугольник - параллелограмм пусть km ∩ ln = O Δaon = Δloc по 2 признаку (an = lc = ny, ∠oan = ∠ocl и ∠olc = ∠ona как внутренние накрест лежащие при AD || BC) => ∠aon = ∠loc => ∠aoc = 180 => с лежит на прямой ao из равенства треугольников также следует, что ao = oc => точка o - точка пересечения диагоналей парал-ма abcd, что и требовалось доказать б) пусть ak = cm = 2x kb = md = 5x bl = nd = 2y an = lc = 5y заметим, что sin(bad) = sin(180 - bad) = sin(abc) = sinA Sabcd = 7x * 7y * sinA = 49xysinA Sklmn = Sabcd - 2(Sakn + Sbkl) = 49xysinA - 2(10xysinA / 2 + 10xysinA / 2) = 49xysinA - 20xysinA = 29xysinA Sklmn / Sabcd = 29xysinA / (49xysinA) = 29 / 49 ответ: а) доказано; б) 29 / 49.
1) Частота дискретизации 44.1 кГц означает, что в секунду делается 44 100 отсчетов. Разрешение 16 бит (т.е. 16/8=2 байта) требует для хранения каждого отсчета 2 байта, а для хранения информации за 1 секунду - 2 х 44 100 = 88 200 байт. Две минуты - это 2 х 60 = 120 секунд и тогда общий объём составит 88 200 х 120 = 10 584 000 байт или 10 584 000 / 1024 = 10 335.94 Кбайт, или 10 335.94 / 1024 = 10.1 Мбайт И все это - для одного канала записи (монофонической). Если запись стереофоническая - то каналов два и потребуется 2 х 10.1 = 20.2 Мбайта и т.д. 2) В этой задаче много неизвестных, а ход её решения обратный по отношению к предыдущей задаче. 2.6 Мбайта = 2.6 х 1024² = 2 726 297.6 байт. В одной минуте 60с, поэтому объем информации за одну секунду не может превышать 2 726 297.6 / 60 = 45 438.3 байт. А теперь это число нужно разделить на произведение трех значений: количества каналов записи, частоты дискретизации в герцах и разрешения (количества байт, отводимых для хранения одного отсчета). Все эти значения нам неизвестны, поэтому у задачи нет однозначного решения. Например, если канал один, а разрешение равно 1 байту, то частота дискретизации не может превышать 45 438 байт, что примерно соответствует общепринятой частоте 44 100 Гц (44.1 кГц).
AK = x, BL = y,
тк AB = CD и BC = AD
имеем:
cm = ak = x
kb = md = nx
nd = bl = y
lc = an = ny
ΔAKN = ΔLME по 1 признаку (ak = cm, an = lc, ∠kan = ∠lcm)
=> kn = lm
аналогично получаем
kl = nm
Таким образом, в 4-хугольнике klmn противоположные стороны равны => этот 4-хугольник - параллелограмм
пусть km ∩ ln = O
Δaon = Δloc по 2 признаку (an = lc = ny, ∠oan = ∠ocl и ∠olc = ∠ona как внутренние накрест лежащие при AD || BC) => ∠aon = ∠loc => ∠aoc = 180 => с лежит на прямой ao
из равенства треугольников также следует, что ao = oc => точка o - точка пересечения диагоналей парал-ма abcd, что и требовалось доказать
б) пусть ak = cm = 2x
kb = md = 5x
bl = nd = 2y
an = lc = 5y
заметим, что sin(bad) = sin(180 - bad) = sin(abc) = sinA
Sabcd = 7x * 7y * sinA = 49xysinA
Sklmn = Sabcd - 2(Sakn + Sbkl) = 49xysinA - 2(10xysinA / 2 + 10xysinA / 2) = 49xysinA - 20xysinA = 29xysinA
Sklmn / Sabcd = 29xysinA / (49xysinA) = 29 / 49
ответ: а) доказано; б) 29 / 49.