V = Sосн * h, где Sосн — площадь основания призмы, h — ее высота.
Так как все ребра призмы равны, то h = 6 см и в ее основании лежит равносторонний треугольник. Площадь равностороннего треугольника можно найти по следующей формуле:
S = a²√3 / 4, где a — сторона треугольника.
Воспользуемся ей и найдем площадь основания призмы, зная, что a = 6 см:
Sосн = 6²√3 / 4 = 9√3 см².
Теперь можно найти объем призмы:
V = 9√3 * 6 = 54√3 ≈ 93,5 см³.
ответ: объем прямой треугольной призмы равен примерно 93,5 см³.
И так в ромбе все стороны равны диагонали в точке пересечения делются пополам и являются биссектрисой его углов вывод из ромба откуда шла большая диагональ 10корней из 3 с его углом в 60 градусов разделится на 2 то есть получится 4 прямоугольных треугольника мы знаем что его гипотенуза 10 так как это сторона катет с прилежащим прямым углом является так же и диогональю которая в точке пересечения делится пополам то есть 5 корней из 3 мы легко находим другой катет по теореме пифагора который так же является диагональю это ромба и так же будет делится по полам катет этот будет равет 5 (100=75+x в квадрате переносим и узнаем что он будет равен 5) так как он равен 5 то тругой тоже будет 5 площадь будет 1/2 * 10 *10корней из 3 =50корней из 3 мы делим на корень из из условия 3 отв 50
Объем призмы ищется по такой формуле:
V = Sосн * h, где Sосн — площадь основания призмы, h — ее высота.
Так как все ребра призмы равны, то h = 6 см и в ее основании лежит равносторонний треугольник. Площадь равностороннего треугольника можно найти по следующей формуле:
S = a²√3 / 4, где a — сторона треугольника.
Воспользуемся ей и найдем площадь основания призмы, зная, что a = 6 см:
Sосн = 6²√3 / 4 = 9√3 см².
Теперь можно найти объем призмы:
V = 9√3 * 6 = 54√3 ≈ 93,5 см³.
ответ: объем прямой треугольной призмы равен примерно 93,5 см³.
Пошаговое объяснение: