Строишь матрицу по системе уравнений: (x, y, z написал для наглядности)..
...и вектор к нему(из результатов уравнения)
Формула для нахождения определителя методом треугольника: a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂ (a - элемент матрицы, нижние индексы - позиция элемента в матрице).
Методом треугольника находишь определитель матрицы: ∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44 Чтобы решать дальше, определитель не должен быть равен нулю.
Заменяешь первый столбец матрицы(x), на вектор: Методом треугольника находишь определитель матрицы: ∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13
Заменяешь второй столбец матрицы(y), на вектор: Методом треугольника находишь определитель матрицы: ∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62
Заменяешь третий столбец матрицы(z), на вектор: Методом треугольника находишь определитель матрицы: ∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45
Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). x = y = z =
Строишь матрицу по системе уравнений: (x, y, z написал для наглядности)..
...и вектор к нему(из результатов уравнения)
Формула для нахождения определителя методом треугольника: a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂ (a - элемент матрицы, нижние индексы - позиция элемента в матрице).
Методом треугольника находишь определитель матрицы: ∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44 Чтобы решать дальше, определитель не должен быть равен нулю.
Заменяешь первый столбец матрицы(x), на вектор: Методом треугольника находишь определитель матрицы: ∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13
Заменяешь второй столбец матрицы(y), на вектор: Методом треугольника находишь определитель матрицы: ∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62
Заменяешь третий столбец матрицы(z), на вектор: Методом треугольника находишь определитель матрицы: ∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45
Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). x = y = z =
1) 5, 4, 6, 5, 7, ...
2) 0, 1, 11, 2, 3, 12, 4, 5, 13, ...
3) 123, 456, 789, 101, 112, 131, ...
4) 101, 112, 131, 415, 161, 718, .
1. через одну разность 1.
5,4,6,5,7,6,8,7
2. также в последовательность 1,2,3.4, и т.д. Через две вставлна 11,12,13 ... .
0, 1, 11, 2, 3, 12, 4, 5, 13,6,7,14...
3. Подряд записаны натуральные числа и между каждой тройкой запятые
123, 456, 789, 101, 112, 131,415,161,...
4) то же самое начиная с 10
101, 112, 131, 415, 161, 718,192,021,222,324