М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mehan2018
mehan2018
27.10.2020 10:54 •  Математика

Найти закономерность в построении последовательности и записать ещё 3 её члена: 1) 5, 4, 6, 5, 7, ...
2) 0, 1, 11, 2, 3, 12, 4, 5, 13, ...
3) 123, 456, 789, 101, 112, 131, ...
4) 101, 112, 131, 415, 161, 718, ...

👇
Ответ:
MMPO
MMPO
27.10.2020

1) 5, 4, 6, 5, 7, ...

2) 0, 1, 11, 2, 3, 12, 4, 5, 13, ...

3) 123, 456, 789, 101, 112, 131, ...

4) 101, 112, 131, 415, 161, 718, .

1.   через одну разность 1.

5,4,6,5,7,6,8,7

2. также в последовательность 1,2,3.4, и т.д. Через две вставлна 11,12,13 ... .

0, 1, 11, 2, 3, 12, 4, 5, 13,6,7,14...

3. Подряд записаны натуральные числа и между каждой тройкой запятые

123, 456, 789, 101, 112, 131,415,161,...

4) то же самое начиная с 10

101, 112, 131, 415, 161, 718,192,021,222,324

4,5(23 оценок)
Открыть все ответы
Ответ:
данил2048
данил2048
27.10.2020
Строишь матрицу по системе уравнений:
\left[\begin{array}{ccc}3x&5y&7z\\2x&-1y&0?\\4x&3y&2z\end{array}\right] (x, y, z написал для наглядности)..

...и вектор к нему(из результатов уравнения) \left[\begin{array}{ccc}1\\2\\-1\end{array}\right]

Формула для нахождения определителя методом треугольника:
a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂
(a - элемент матрицы, нижние индексы - позиция элемента в матрице).

Методом треугольника находишь определитель матрицы:
∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44
Чтобы решать дальше, определитель не должен быть равен нулю.

Заменяешь первый столбец матрицы(x), на вектор:
\left[\begin{array}{ccc}1&5&7\\2&-1&0\\-1&3&2\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13

Заменяешь второй столбец матрицы(y), на вектор:
\left[\begin{array}{ccc}3&1&7\\2&2&0\\4&-1&2\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62

Заменяешь третий столбец матрицы(z), на вектор:
\left[\begin{array}{ccc}3&5&1\\2&-1&2\\4&3&-1\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45

Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). 
x = \frac{13}{44} = 0.295
y = \frac{-62}{44} = -1.409
z = \frac{45}{44} = 1.023

Проверка обычной заменой:
3*0.295+5*(-1.409)+7*1.023 = 1
2*0.295-1*(-1.409)+0*1.023 = 2
4*0.295+3*(-1.409)+2*1.023 = -1
4,8(25 оценок)
Ответ:
EfremovMk
EfremovMk
27.10.2020
Строишь матрицу по системе уравнений:
\left[\begin{array}{ccc}3x&5y&7z\\2x&-1y&0?\\4x&3y&2z\end{array}\right] (x, y, z написал для наглядности)..

...и вектор к нему(из результатов уравнения) \left[\begin{array}{ccc}1\\2\\-1\end{array}\right]

Формула для нахождения определителя методом треугольника:
a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂
(a - элемент матрицы, нижние индексы - позиция элемента в матрице).

Методом треугольника находишь определитель матрицы:
∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44
Чтобы решать дальше, определитель не должен быть равен нулю.

Заменяешь первый столбец матрицы(x), на вектор:
\left[\begin{array}{ccc}1&5&7\\2&-1&0\\-1&3&2\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13

Заменяешь второй столбец матрицы(y), на вектор:
\left[\begin{array}{ccc}3&1&7\\2&2&0\\4&-1&2\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62

Заменяешь третий столбец матрицы(z), на вектор:
\left[\begin{array}{ccc}3&5&1\\2&-1&2\\4&3&-1\end{array}\right]
Методом треугольника находишь определитель матрицы:
∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45

Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). 
x = \frac{13}{44} = 0.295
y = \frac{-62}{44} = -1.409
z = \frac{45}{44} = 1.023

Проверка обычной заменой:
3*0.295+5*(-1.409)+7*1.023 = 1
2*0.295-1*(-1.409)+0*1.023 = 2
4*0.295+3*(-1.409)+2*1.023 = -1
4,8(94 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ