ОДЗ x>0 (log²(2)x-2log(2)x)²+36log(2)x+45-18log²(2)x<0 (log²(2)x-2log(2)x)²-18(log²(2)x-2log(2)x)+45<0 log²(2)x-2log(2)x=a a²-18a+45<0 a1+a2=18 U a1*a2=45⇒a1=3 U a2=15 3<log²(2)x-2log(2)x<15 log(2)x=b 3<b²-2b<15 {b²-2b>3⇒b²-2b-3>0 {b²-2b<15⇒b²-2b-15<0 b1+b2=2 U b1*b2=-3⇒b1=-1 U b2=3 b<-1 U b>3 b3+b4=2 U b3*b4=-15⇒b3=-3 U b4=5 -3<b<5 -3<b<-1 U 3<b<5 -3<b<-1⇒-3<log(2)x<-1⇒1/8<x<1/2 3<b<5⇒3<log(2)x<5⇒8<x<32 ответ x∈(1/8;1/2) U (8;32)
Боковая сторона — а, отрезки, на которые её делит окружность — а1 и а2., радиус вписанной окружности — р, основания — в1 и в2. достраиваем треугольники, образованные центром окружности, углами трапеции и точками касания, получаем 8 прямоугольных треугольников, из которых два — с катетами р и а1, два — с катетами р и а2, два — с катетами р и в1/2, и два — с катетами ри в2/2. из теоремы пифагора для треугольников с общими гипотенузами (отрезки от центра окружности к вершинам) имеем р^2 + а1^2 = р^2 + в1^2/4 р^2 + а2^2 = р^2 + в2^2/4, отсюда в1 = 2*а1 в2 = 2*а2 ищем высоту, для этого строим высоту из верхней вершины. эта высота отсекает на нижнем основании отрезок х. поскольку трапеция равнобочная, х = (в2-в1)/2 = а2-а1. из теоремы пифагора имеем н^2 = (а1 + а2)^2 - (а2 -а1)^2 = 4а1*а2 с = (в1 + в2)*н/2 = 2*(а1 + а2)*квкор (а1*а2) (квкор — квадратный корень) . с = 2 * 26 * кв кор (8*18) = 2*26*12 = 624.
17/3 = 5 целых 2/3
Смешанная дробь это целая и дробная часть