Меры охраны: 1.Венерин башмачок, лотос, женьшень - не рвать, не вытаптывать.
2. Дровосек реликтовый (жук) - не наступать, не убивать.
3. Белый журавль, зубр - не убивать.
Условные знаки:
1(не рвать цветы).В пустом квадратике рисеум ладошку и зачеркиваем по-диагонали красной линией. (под ладошкой можно нарисовать цветок, а можно не рисовать)
2. (не наступать) рисуем в пустом квадратике ногу в ботинке и перечеркиваем по диагонали красной чертой (жука можно рисовать,а можно - нет)
3.(не убивать) В пустом квадратика рисуем ружье/пистолет и зачеркиваем по диагонали красной чертой.
Такую работу по окружающему миру сдавали в своей школе, получили 5.
Например, 2 * 3 * 5 * 7 + 1 = 211. Число 211 само является простым.
2 * 3 * 5 * 7 * 11 + 1 = 2311. Число 2311 также простое.
[ Т. е. произведение всех подряд идущих простых чисел от первого и до определенного и плюс 1 всегда будет давать простое число? Проверяем:
2 * 3 + 1 = 7,
2 * 3 * 5 + 1 = 31.
Но если числа идут не от первого простого и не подряд, то в результате простое число не всегда получается:
3 * 5 * 7 + 1 = 106 (составное)
2 * 5 * 7 + 1 = 71 (простое)
2 * 3 * 7 + 1 = 43 (простое)
3 * 5 * 7 * 11 + 1 = 1156 (составное)
3 * 11 * 13 + 1 = 430 (составное)
2 * 3 * 11 * 13 + 1 = 859 (простое)
Получается, что число 2 в этой формуле (n = p1 * p2 * … + 1) всегда приводит к простому числу в результате, независимо от того, какие взяты остальные простые числа. Без него всегда получается составное, также независимо от того, как и каком количестве взяты простые.]
Вообще-то, то что число, полученное по формуле n = p1 * p2 * … + 1, где множество p - простые числа, начинающиеся с первого и идущие подряд, также будет простым доказывается. Ведь если n не делится ни на одно из ряда p, то нет других простых чисел до него, кроме него самого