Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон данной фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.
На одной полке было в 3 раза больше книг, чем на другой. Когда с одной полки убрали 8 книг, а на другую положили 32 книги, то на полках стало книг поровну. Сколько книг было на каждой полке первоначально?
Пусть х книг было на одной полке, тогда 3х книг - было на другой полке. По условию задачи составляем уравнение: 3х-8= х+32 3х-х=32+8 2х=40 х=20 книг было на одной полке 20*3=60 книг было на другой полке
Дети делили яблоки. Когда каждому стали раздавать по 5 яблок, то последнему досталось 3 яблока; когда стали раздавать по 4 яблока, то осталось 15 яблок. Сколько было детей и сколько - яблок? Пусть х детей было, тогда по количеству яблок ( их было в двух ситуациях одинаковое количество) составляем уравнение: 5(х-1)+3 = 4х+15 5х-5+3=4х+15 5х-4х=15+2 х=17 детей участвовало в раздаче яблок 4*17+15=83 яблока было
Это очень просто, смотрите (рассматриваю только целые положительные числа) : число 54 заканчивается на четвёрку, соответственно мы можем рассматривать не 54, а 4- их степени на одну цифру заканчиваются. Теперь строим таблицу: 4^1 mod 10=4 4^2 mod 10=6 4^3 mod 10=4 (!) Зацикливание, значит 54^(2n) mod 10=6, а 54^(2n+1) mod 10=4. Короче говоря, если степень чётная, то 6, если нет, то 4. Аналогично вместо 28 рассмотрим 8 и построим таблицу: 8^1 mod 10=8 8^2 mod 10=4 8^3 mod 10=2 8^4 mod 10=6 8^5 mod 10=8 (!) Зацикливание. Значит если остаток от деления на 4 равен нулю, то 6, если один- то 8 и т. д. Т. к. 21 mod 4=1, у нас будет 8. Осталось сложить (8+4) mod 10=2
Средняя линия трапеции это линия выходящяя из середины боковых сторон и равная полусумме оснований.