высота=8см, S∆AOB=S∆BOC=S∆COD=S∆AOD=64см²
Пошаговое объяснение:
диагонали квадрата делят его на 4 равных равнобедренных прямоугольных треугольника, в которых стороны квадрата - гипотенузы, а диагонали - катеты. Обозначим вершины квадрата В С Д с диагоналями АС и ВД а точку их пересечения О. Проведём высоту ∆ВОС и АОД. Она равна ВК равна стороне квадрата и поскольку его диагонали при пересечении делятся пополам, то КО=ОН=½×АВ=½×16=8см
Поскольку треугольники равны, то величина высоты у всех будет одинаковая
Итак: высота каждого треугольника составляет 8см
У равнобедренного прямоугольного треугольника катеты меньше гипотенузы в √2 раз, поэтому АО=СО=ВО=ДО=16/√2=8√2см (если 16 разложить как 8×√2×√2/√2=8√2)
Площадь прямоугольного треугольника вычисляется по формуле:
Итак: S=64см²
Диагонали квадрата пересекаются под прямым углом и поэтому Эти треугольники, на которые диагонали делят квадрат являются прямоугольными равнобедренными, и диагонали делятся пополам на равные части и являются катетами в этих треугольниках, которые меньше гипотенузы в √2 раз,. а углы, прилегающие к гипотенузе равны каждый по 45°.
18=1(mod 7);
18^4=1(mod 7);
52=1(mod 7);
52^3=1(mod 7);
86=1(mod 7);
86^3=1(mod 7);
14=-3(mod 7).
т. о. 18^4+52^3+86^3+14=1+1+1-3(mod 7)=0(mod 7) <=> 18^4+52^3+86^3+14 |7.
20=1(mod 19);
20^3=1(mod 19);
58=1(mod 19);
58^4=1(mod 19);
77=1(mod 19);
77^2=1(mod 19);
16=-3(mod 19);
т. о 20^3+58^4+77^2+16=1+1+1-3(mod 19)=0(mod 19) <=> 20^3+58^4+77^2+16 |19
или непосредственно:
(17+1)^4+(51+1)^3+(85+1)^3+14=17A+51B+85C+1+1+1+(17-3)=17(A+3B+5C+1) |17
(19+1)^3+(57+1)^4+(76+1)^2+(19-3)=19A+57B+76C+1+1+1+(19-3)=19(A+3B+4C+1) |19.