Ясно, что при n=2k система имеет решение a=3^k, b=0. Покажем, что других решений нет.
Пусть ни одно из чисел a и b не делится на 3. Покажем, что если число имеет остаток 1 или 2 при делении на 3, то квадрат этого числа имеет остаток 1 при делении на 3. Действительно, пусть a=3k+1, тогда a²=9k²+6k+1, если a=3k+2, то a²=9k²+18k+4, в обоих случаях остаток равен 1. Но сумма двух чисел с остатком 1 при делении на 3 не может нацело делиться на 3, получили противоречие.
Теперь рассмотрим случай, когда хотя бы одно из чисел a и b делится на 3. Если только одно число делится на 3, то сумма квадратов не будет делиться на 3, то есть, такой вариант невозможен. Остается случай, когда на 3 делятся оба числа. Пусть , где p и q - натуральные числа, не делящиеся на 3. Ясно, что x<n, y<n. Если x=y, то, разделив обе части на , получим уравнение . Поскольку числа p и q не делятся на 3, а величина n-x больше 0, это уравнение корней не имеет. Наконец, рассмотрим случай, когда x≠y, в силу симметрии можно считать, что x<y. Разделив уравнение на , имеем . Первое слагаемое не делится на 3, второе и третье делятся, получили противоречие.
Таким образом, уравнение имеет решение лишь при четных n. Следовательно, оно имеет 515 решений, меньших 1031.
Расположим трапецию так, чтобы основания её были вертикальны. То есть меньшая боковая сторона АД станет основанием фигуры вращения АВСД. АВ=10, СД=15, ВС=13. Проведём ВК параллельно АД. Наглядно видно, что тело вращения вокруг вертикальной оси ДС состоит из конуса (проекция СВК) и цилиндра(проекция АВКД). Полная поверхность тела вращения состоит из боковой поверхности конуса+боковая поверхность цилиндра + площадь круга основания. Радиус R у всех этих фигур общий . КС=ДС-АВ=15-10=5. R=корень из(ВС квадрат -КС квадрат)= корень из(169-25)=12. Тогда полная поверхность тела вращения S=Sосн.+Sцил.+Sкон.=пи* Rквадрат+ 2пи *R*h+пи*R*l=пи*(R квадрат+2R*10+ R*13)=пи*(144+240+156)=540 *пи. Здесь l=ВС=13, h=АВ=10.