Азиз купил на базаре 2 кг картофеля, 3 кг свеклы, 5 кг моркови, 4 кг яблок, 5 кг капусты, 2 кг груш и 3 кг слив. Сколько килограммов овощей и сколько килограммов фруктов купил Азиз? ПОМАГИТЕ НЕ МОГУ СОСТАВИТЬ УСЛОВИЕ
Если результат оканчивается на 2010, то можно представить его в виде N=1000k+10. Поскольку число 1000 делится на 4 и делится на 25, а число 10 не делится на 4 и на 25, то число N не делится на 4 и не делится на 25. Тогда среди 14 чисел, вошедших в его произведение, ровно одно четное число и ровно одно, кратное 5, то есть, ровно одно оканчивается на четную цифру и ровно одно на цифру 5 (цифр 0 на карточках нет, поэтому это два разных числа). Тогда оставшиеся 12 чисел могут оканчиваться только на цифры 1, 3, 7. Всего таких карточек 1+3+7=11 штук, значит, это невозможно, получили противоречие.
Аналогично, если результат оканчивается на 2012, то N=1000k+12 и число N не делится на 5 и не делится на 8, тогда ни один из его сомножителей не оканчивается на 5 и не более 2 из его сомножителей оканчиваются на четную цифру. Тогда хотя бы 12 из них оканчиваются на цифры 1, 3, 7, что невозможно.
Заметим, что в последнем случае такие рассуждения не работают: если число оканчивается на 2016, то оно делится на 16. Следовательно, среди 14 сомножителей четыре могут оканчиваться на четную цифру, а остальные 10 на цифры 1, 3, 7, что возможно. Конкретный пример таких 14 чисел строить не требуется.
Если результат оканчивается на 2010, то можно представить его в виде N=1000k+10. Поскольку число 1000 делится на 4 и делится на 25, а число 10 не делится на 4 и на 25, то число N не делится на 4 и не делится на 25. Тогда среди 14 чисел, вошедших в его произведение, ровно одно четное число и ровно одно, кратное 5, то есть, ровно одно оканчивается на четную цифру и ровно одно на цифру 5 (цифр 0 на карточках нет, поэтому это два разных числа). Тогда оставшиеся 12 чисел могут оканчиваться только на цифры 1, 3, 7. Всего таких карточек 1+3+7=11 штук, значит, это невозможно, получили противоречие.
Аналогично, если результат оканчивается на 2012, то N=1000k+12 и число N не делится на 5 и не делится на 8, тогда ни один из его сомножителей не оканчивается на 5 и не более 2 из его сомножителей оканчиваются на четную цифру. Тогда хотя бы 12 из них оканчиваются на цифры 1, 3, 7, что невозможно.
Заметим, что в последнем случае такие рассуждения не работают: если число оканчивается на 2016, то оно делится на 16. Следовательно, среди 14 сомножителей четыре могут оканчиваться на четную цифру, а остальные 10 на цифры 1, 3, 7, что возможно. Конкретный пример таких 14 чисел строить не требуется.
2+3+5+5= 15кг овощей
4+2+3= 11кг фруктов
ответ: 15кг овощей и 11кг фруктов купил Азиз.