Эту логическую задачу можно разрешить двумя 1) Первый заключается в последовательном предположении о количестве честных и нечестных гномов и последующей проверке логикой каждого нашего предположения; для начала допустим, что все двенадцать гномов лгуны, проверяем логику — первый гном, заявив «здесь нет ни одного честного гнома», сказал правду, значит, не выполняется наше первоначальное «все двенадцать лгуны»; для варианта «один гном честен» логика опять нарушена, ведь тогда выходит, что 2-ой, 3-ий, 4-ый и далее до 12-го гнома сказали правду, а мы предположили, что такой только один. Нетрудно убедиться, что применяя такой же алгоритм далее (последовательно предполагая, что 2-е, 3-е, 4-ро, 5-ро, 6-ро, 7-ро, 8-ро, 9-ро, 10-ро, 11-ро, 12-ро гномов говорят правду) мы почти во всех случаях получим сбой логики, исключение же составит только случай, когда правдивых гномов шестеро, ведь именно для этого варианта логика соблюдается: только седьмой, восьмой, девятый и далее до двенадцатого гномов не грешат против правды. Таким образом мы приходим к выводу, что на самом деле на полянке собралось шестеро честных и шестеро нечестных гномов. 2) Второй весьма близок к «эвристическому методу» - мы допускаем (помня про 50-ти процентную вероятность выпадения «орла» и «решки» при бросании монеты), что первые шесть гномов врут, а оставшиеся шесть — говорят правду. Проверяя такое предположение, приходим к выводу: если бы врущих было пять или меньше пяти, то правду сказали бы по крайней мере семь гномов – с шестого по двенадцатый, что не отвечает логике, а если бы говорящих правду гномов было семь или больше, то тогда выходит, что первые семь гномов солгали, то есть лжецов по крайней мере семь, но два раза по семь больше двенадцати, следовательно, наше первичное предположение: 6+6 — верно.
Длина окружности
Формула длины окружности радиуса r или диаметра d = 2r имеет вид:
или
где \pi \approx 3,14 – число «пи».
Примеры решения задач
ПРИМЕР 1
Задание Найти длину окружности диаметра 1,5 см.
Решение Для нахождения длины заданной окружности воспользуемся формулой l = \pi d. Подставляя в неё значение d = 1,5 см, получим
l = 1,5 \cdot \pi = 1,5 \pi (см)
Учитывая, что \pi \approx 3,14 окончательно имеем:
l = 1,5 \pi \approx 1,5 \cdot 3,14 = 4,71 (см)
ответ Длина окружности равна l = 1,5 \pi см или l \approx 4,71 см.
Контрольные работы на заказ
Решаем контрольные по всем предметам. 10 лет опыт! Цена от 100 руб, срок от 1 дня!
Онлайн заказЦены и сроки
Нужно решить задачи?
Решаем задачи любой сложности от 1 дня! Недорого и точно в срок. Заказывай!
Наши услугиБыстрый заказ
ПРИМЕР 2
Задание Найти длину окружности, вписанную в правильный треугольник со стороною 4 \sqrt{3} см.
Решение Сделаем рисунок (рис. 2).
По условию a = 4 \sqrt{3} см. Сторона правильного треугольника связана с радиусом вписанной в него окружности следующим соотношением:
\[ r=\frac{a}{2 \sqrt{3}} \]
Подставляя в последнее равенство заданное значение стороны правильного треугольника a = 4 \sqrt{3} см, найдем радиус вписанной окружности:
(см)
Длину окружности найдем по формуле:
\[ l=2 \pi r \]
Подставляя в неё найденное значение радиуса, будем иметь:
l = 2 \cdot 2 \cdot \pi = 4 \pi (см)
Если так же подставить \pi \approx 3,14, окончательно получим:
l = 4 \pi \approx 4 \cdot 3,14 = 12,56 (см)
ответ l = 4 \pi см или l \approx 12,56 см.
Пошаговое объяснение: