М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Тучка12
Тучка12
15.06.2021 16:35 •  Математика

Найдите наибольшее значение функции
y=ln(4x)-4x+5 на отрезке [1/8;5/8]

👇
Ответ:
лалала74
лалала74
15.06.2021
Для вычисления наибольшего значения функции y=ln(4x)-4x+5 на отрезке [1/8;5/8] нам потребуется применить производную функции и найти значения, при которых производная равна нулю.

Шаг 1: Найдем производную функции y=ln(4x)-4x+5:
Для нахождения производной функции ln(4x)-4x+5 мы будем использовать правило дифференцирования сложной функции.

Правило дифференцирования ln(u) (где u является функцией от x) состоит в умножении производной внутренней функции на производную самой внутренней функции. Получается, что производная функции ln(4x) будет равна 1/(4x) * 4 = 4/(4x) = 1/x.

Таким образом, производная функции y=ln(4x)-4x+5 равна 1/x - 4.

Шаг 2: Найдем значения x, при которых производная равна нулю:
Чтобы найти значения x, при которых производная функции равна нулю, мы приравняем 1/x - 4 к нулю и решим полученное уравнение:

1/x - 4 = 0
1/x = 4
x = 1/4

Шаг 3: Проверим значения x:
Теперь мы должны проверить значения x, чтобы убедиться, что они попадают в заданный отрезок [1/8;5/8].

Проверяем x = 1/4:
1/8 ≤ 1/4 ≤ 5/8 - значение x = 1/4 попадает в заданный отрезок.

Шаг 4: Вычисляем значение функции в найденных точках:
Теперь мы можем вычислить значение функции y=ln(4x)-4x+5 в точках x=1/8, x=1/4 и x=5/8.

Вычисляем y при x = 1/8:
y = ln(4*(1/8))-4*(1/8)+5 = ln(1/2)-1/2+5

Вычисляем y при x = 1/4:
y = ln(4*(1/4))-4*(1/4)+5 = ln(1)-1+5 = 5

Вычисляем y при x = 5/8:
y = ln(4*(5/8))-4*(5/8)+5 = ln(5/2)-5/2+5

Шаг 5: Находим наибольшее значение функции:
Сравниваем значения функции y в вычисленных точках и выбираем наибольшее значение.

y(x=1/8) = ln(1/2)-1/2+5
y(x=1/4) = 5
y(x=5/8) = ln(5/2)-5/2+5

Из полученных значений можно заключить, что наибольшее значение функции y=ln(4x)-4x+5 на отрезке [1/8;5/8] равно 5.
4,7(36 оценок)
Проверить ответ в нейросети
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ