М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vladbochilo
vladbochilo
28.04.2020 03:01 •  Математика

(8 5/7-6 5/6:1 5/36)•4/9
С росписью

👇
Ответ:
nickitaartemjev
nickitaartemjev
28.04.2020

Відповідь:

1) 6 5\6:1 5\36=5,7

2) 8 5\7 - 5,7 = 3

3)3* 4\9= 1,3

Покрокове пояснення:

4,4(71 оценок)
Ответ:
katia6173
katia6173
28.04.2020

(8 5/7-6 5/6:1 5/36)•4/9

(61\7-41\6*5\36)*4\9

(61\7-205\216)*4\9

11741\1512*4\9

11741/378*1/9

11741/3402

3 1535\3402

* - це помножити

Пошаговое объяснение:

4,4(57 оценок)
Открыть все ответы
Ответ:
yurkamail
yurkamail
28.04.2020
Зима-это замечательное цаг года!Вокруг үрглҗ белым-бело,а как красиво сверкают снежинки.Они кружатся в воздухе,проделывая пируэты,и тихо,бесшумно,ложатся на землю.Зимой намного тише,спокойнее. Можно һарх утром дотран киилх морозный воздух,который имеет приятную пробуждающую силу.Но ик всего,конечно,зиму любят күүкд. Сколько счастья можно увидеть на их лицах,когда идешь по улице.Зима-это цаг чудес,цаг исполнения желаний. Может бәәх, именно поэтому зимой өдр короче,длиннее таинственная ночь,которая и создает чудеса. Может бәәх, поэтому именно зимой үрглҗми любимый праздник,когда үрглҗ собираются семьями и загадывают желания, и все вместе верят в чудо.
4,6(62 оценок)
Ответ:
IVIOPGAN
IVIOPGAN
28.04.2020

\sum\limits_{n=1}^{\infty} (-1)^{n-1} \cdot\frac{2n+1}{n\cdot (n+1)}

Исследуем этот ряд на абсолютную сходимость.

\sum\limits_{n=1}^{\infty} \left|(-1)^{n-1} \cdot\frac{2n+1}{n\cdot (n+1)}\right| =

= \sum\limits_{n=1}^{\infty} \frac{2n+1}{n\cdot (n+1)} = \sum\limits_{n=1}^{\infty} a_n

a_n = \frac{2n+1}{n\cdot (n+1)}

Рассмотрим ряд

\sum\limits_{n=1}^{\infty} \frac{1}{n} = \sum\limits_{n=1}^{\infty} b_n

Используем предельный признак сравнения:

\lim\limits_{n\to \infty} \frac{a_n}{b_n} = \lim\limits_{n\to \infty} \frac{\frac{2n+1}{n\cdot (n+1)}}{\frac{1}{n}} =

= \lim\limits_{n\to \infty} \frac{2n+1}{n+1} = \lim\limits_{n\to \infty} \frac{2+\frac{1}{n}}{1+\frac{1}{n}} = 2

Значит ряды \sum\limits_{n=1}^{\infty} a_n и \sum\limits_{n=1}^{\infty} b_n

сходятся или расходятся одновременно, но ряд

\sum\limits_{n=1}^{\infty} b_n = \sum\limits_{n=1}^{\infty} \frac{1}{n}

это гармонический ряд, который расходится. Значит и ряд

\sum\limits_{n=1}^{\infty} a_n = \sum\limits_{n=1}^{\infty} \frac{2n+1}{n\cdot (n+1)}

расходится.

Исследуем данный в задании ряд на условную сходимость. Используем признак Лейбница. Ряд знакочередующийся.

a_{n+1} = \frac{2\cdot(n+1) + 1}{(n+1)\cdot (n+1+1)} = \frac{2n+3}{(n+1)\cdot (n+2)}

\frac{a_{n+1}}{a_n} = \frac{\frac{2n+3}{(n+1)\cdot (n+2)} }{\frac{2n+1}{n\cdot(n+1)}} =

= \frac{2n+3}{2n+1} \cdot \frac{n}{n+2} = \frac{2n^2 +3n}{2n^2 + 4n + n + 2} =

= \frac{2n^2 + 3n}{2n^2 + 5n + 2} < 1

т.к. 2n^2 + 3n < 2n^2 + 5n + 20 < 2n+2n+1 0.

То есть a_{n+1} < a_n.

То есть последовательность a_n монотонно убвывает.

\lim\limits_{n\to \infty} a_n = \lim\limits_{n\to \infty} \frac{2n+1}{n\cdot (n+1)} =

= \lim\limits_{n\to \infty} \frac{2n+1}{n^2 + n} =

= \lim\limits_{n\to\infty} \frac{\frac{2}{n} + \frac{1}{n^2}}{ 1 + \frac{1}{n}} = 0

То есть последовательность a_n монотонно убвывает и стремится к нулю. Итак, по признаку Лейбница, исходный ряд сходится.

ответ. Сходится условно.

4,6(27 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ