Ноль функции x₁ = √6 входит в интервал интегрирования
x₁ ∈ [1; 3] и разбивает криволинейную трапецию на 2 части : над осью Ох ( на графике залита жёлтым цветом ) и под осью Ох ( на графике залита зелёным цветом ). Общая площадь будет состоять из суммы двух площадей.
1) Площадь ограничена сверху параболой y = 6 - x², снизу осью абсцисс, слева прямой x = 1, справа нулём функции x₁ = √6.
2) Площадь ограничена снизу параболой y = 6 - x², сверху осью абсцисс, слева нулём функции x₁ = √6, справа прямой х = 3.
Всего в числе три цифры. Первое ограничение - две нечетные, и третья четная, так как сумма двух четных тоже четное число. Второе ограничение - сумма двух нечетных должна быть не более 8. Имеем четные цифры - 2, 4, 6 и 8. Если нечетные цифры одинаковые. то для каждой пары будет по 3 варианта Таких пар цифр можно использовать 2 - это для цифр 2 и 1 - 3 варианта. Для примера: 211, 121, 112. для цифр 6 и 3 - 3 варианта Если нечетные цифры разные, то вариантов перестановок из 3 по 3 будет по 6 вариантов для каждой тройки цифр. Можно составить 4 тройки удовлетворяющие условию. Это 4, 1 и 3 или 6, 1 и 5 или 8, 1 и 7 или 8, 3, и 5. Всего вариантов - 2*3+4*6 = 30 - столько разных чисел можно составить по условию задачи. ответ: 30 разных чисел.
Сумма любого числа чётных цифр — чётное число, значит, сумма нечётных цифр тоже должна быть чётной. Сумма двух нечётных цифр – как раз чётное число, а значит, их и должно быть всегда ровно две. При этом сумма нечётных цифр не меньше двух, но при этом и не больше восьми, иначе она не сойдётся с единственной чётной цифрой, которой эта сумма должны быть равна.
Пусть чётная цифра – 2, тогда нечётные – 1 и ещё 1:
у = 6 - x²; y = 0; x = 1; x = 3
6 - x² = 0 ⇒ x₁ = √6; x₂ = -√6
Ноль функции x₁ = √6 входит в интервал интегрирования
x₁ ∈ [1; 3] и разбивает криволинейную трапецию на 2 части : над осью Ох ( на графике залита жёлтым цветом ) и под осью Ох ( на графике залита зелёным цветом ). Общая площадь будет состоять из суммы двух площадей.
1) Площадь ограничена сверху параболой y = 6 - x², снизу осью абсцисс, слева прямой x = 1, справа нулём функции x₁ = √6.
2) Площадь ограничена снизу параболой y = 6 - x², сверху осью абсцисс, слева нулём функции x₁ = √6, справа прямой х = 3.