cos2x+sin²x = 0,75
cos²x - sin²x + sin²x = 0.75
cos²x = 0.75
cosx = ±√0.75 = ±0.5√3
1) cosx = -0.5√3
x₁ = 5π/6 + 2πn
x₂ = -5π/6 + 2πn
n =1 x₁ = (2 + 5/6) π x∉[π; 5π/2]
x₂ = (2- 5/6) π = 7π/6 x∈[π; 5π/2]
n =2 x₁ = (4 + 5/6) π x∉[π; 5π/2]
x₂ = (4- 5/6) π x∉[π; 5π/2]
2) cosx = 0.5√3
x₁ = π/6 + 2πn
x₂ = -π/6 + 2πn
n =1 x₁ = (2 + 1/6) π = 13π/6 x∈[π; 5π/2]
x₂ = (2 - 1/6) π = 11π/6 x∈[π; 5π/2]
n =2 x₁ = (4 + 1/6) π x∉[π; 5π/2]
x₂ = (4- 1/6) π x∉[π; 5π/2]
ответ: x = 7π/6; 11π/6; 13π/6
1)2^x=2⁵
2)2^x-4=2⁶
x-4=6
x=6+4
x=10
3)(4/5)^x=(4/5)^-2
4)(3²-3+1)*3^x=21
(9-3+1)*3^x=21
7*3^x=21
3x=3
3^x=3¹ x=1
5)2^x*2+(2²)^x=80
2^x*2+(2^x)²=80
t*2+t²=80
t=8
t=-10
2^x=8
2^x=-10
x=3
6)(7^x)²-6*7^x+5=0
t²-6t+5=0
7^x=5 7^x=1
x(двойка снизу)=log(7 тоже снизу) (5)
х(1 снизу)=0
7)(3^х)²-2*3^х=3
t²-2t=3
t=3 t=-1
3^x=3 3^x=-1
x=1