Пошаговое объяснение:
Пусть x и y — сомножители числа 49, тогда xy = 49, и x = 49/y
Их сумма минимальна, т.е. минимально число z = x + y = 49/y + y.
Производная функции z' = -49/(y^2) + 1
Приравнивая её к нулю, находим её экстремумы
z' = -49/(y^2) + 1 = 0
z' = (y -7)(y + 7) / (y^2) = 0
y^2 = 49, y = 7 и y = -7
На числовой оси Oy производная z' больше нуля на интервале (-inf, -7) U (7, +inf)
На смежном интервале она меньше нуля, поэтому минимум её находится в точке y = 7.
На интервале положительных чисел (0, +inf) точка y = 7 представляет абсолютный минимум функции,
поэтому ответ x = 7, у = 7
Уравнение окружности имеет вид (x – a)2 + (y – b)2 = R^2, где a и b – координаты центра A окружности . Подставим координаты центра (-3;4) в уравнения и получим: (x+3)+(y-4)=R^2 Осталось только найти R
Найти его очень легко. Начертим координатные оси на листке, и обозначим точку А с координатами (-3;4).В условии задачи сказано, что окружность проходит через начало координат, следовательно расстояние от точки А до начала координат и есть искомый радиус.
Далее опускаем проекции точки А на оси 0x и 0y. Рассматриваем прямоугольный треугольник, в котором нам известны два катета, имеющие длины 3 и 4, и по теореме Пифагора найдём гипотенузы(т. е R) .
R=квадратный корень из(16+9)=5; подставив радиус в уравнение получаем:
(x+3)+(y-4)=25
1%=0,01 (1/100)
80%=0,8 (80/100)
46%=0,46 (46/100)
10%=0,1 (10/100)
74%=0,74 (74/100)
12%=0,12 (12/100)
49%=0,49 (49/100)
60%=0,6 (60/100)
7%=0,07 (7/100)
85%=0,85 (85/100)
100%=1 (100/100)
240%=2,4 (240/100)
4%=0,04 (4/100)
400%=4 (400/100)
17%=0,17 (17/100)