Пронумеруем учеников по кругу начиная от тог0, кто сказал 6. Итак а1 — 6; а2 — 10; а3 — 14; а4 — 18; а5 — 22; а6 — 26; а7 — 30; а8 — 34; а9 — 38; а10 — 42. Найдем какое число сказал а10. Очевидно, что это число знали а1 и а9. Сложим числа которые они сказали: это значит, что мы в результате получили сумму чисел задуманных учениками: а10 — два числа, а также а2 и а8 — по одному числу. Теперь нужно отнять числа задуманные а2 и а8, Их в сумме также назвали ученики а3 и а7, но мы вместе отняли и числа задуманные учениками а4 и а6, а эти числа в сумме назвал ученик а5, Поэтому прибавим их назад. В результате получим число в два раза большее чем задумал а10. Разделим его пополам. Получим (38+6-14-30+22):2=11. ответ: ученик, который назвал число 42, задумал число 11.
Пошаговое объяснение:
Признак делимости на 3 : Если сумма цифр данного числа делится без остатка на 3 , значит данное число делится на 3.
44 . 4+ 4 = 8 не делится на 3
444 . 4 + 4 + 4 = 12 делится на 3 без остатка
4444. 4 + 4 + 4 + 4 = 16 не делится на 3.
444444. 4 + 4 + 4 + 4 + 4 + 4 = 24 делится на 3 без остатка
555. 5 + 5 + 5 = 15 делится на 3 без остатка
5555. 5 + 5 + 5 + 5 = 20 не делится на 3
ответ 444 ;444444 ; 555.
Признак делимости на 9 аналогичен признаку делимости на 3 , только сумма цифр должна делиться без остатка на 9.
81. 8 + 1 = 9 делится на 9
818, 8 + 1 + 8 = 17 не делится на 9
8181. 8 + 1 + 8 + 1 = 18 делится на 9
81818. 8 + 1 + 8 + 1 + 8 = 26 не делится на 9
818181. (8 + 1) + (8 + 1) + (8 + 1) = 9 * 3 делится на 9 , так как 1 из множителей 9
ответ : 81 ; 8181 ; 818181 .
Если вы что-то не поняли или нашли ошибку , то напишите автору .
Дополнение : Если вам дано огромное число
Например : 98746282939 и нужно определить делится на 3 или на 9
Найдём сумму цифр = 67
Однако нам не очень хочется считать столбиком 67 / 3
Поэтому посчитаем сумму цифр 67
= 13
13 уже точно не делится на 3 . В этом примере мы увидели , как можно несколько раз применять один и тот же признак !