. Условие, что выражение равно единице, можно записать так:
(100 + n)k(100 - n)l = 100k + l. Так как правая часть четна, то и левая часть должна быть четна, значит, n четно. Аналогично, левая часть делится на 5, значит, n делится на 5. Значит, n делится на 10. Можно перебрать все 9 возможных вариантов: n = 10, 20, ..., 90. Например, если n = 10, то левая часть делится на 11, что невозможно.Можно обойтись без перебора: пусть n не делится на 25. Тогда числа 100 - n и 100 + n тоже не делятся на 25. Значит, пятерка входит в разложение левой части на простые множители ровно k + l раз. Но она входит в разложение правой части 2(k + l ) раз -- противоречие. Итак, n делится на 25. Аналогично доказывается, что n делится на 4. Но тогда n делится на 100, что невозможно, ибо 0 < n < 100.
согласно этим данным составим и решим уравнение:
5х-х=252
4х=252
х=252:4
х=63 (га) - площадь II участка.
5х=5·63=315 (га) - площадь I участка.
ответ: 315 га - площадь первого участка, 63 га площадь второго участка.
Проверка:
315-252=63
315:63=5
2) 1)7х-х=324, 6х=324, х=324:6, х=54 га-площадь первого участка.
2)54*7=378га- площадь второго участка.