Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
ответ:1)43x<=43
x<=1
наименьшее натуральное число,являющееся решением неравенства это число 1
2)2/3х<35
x<35*3/2
x<52 1/2
число 52
3)0,6a-1,2-0,2>=0,8a+1,6+3,5
0,6a-0,8a>=1,4+5,1
-0,2a>= 6,5
a<= -32 1/2
4)60-17х>-19
-17х>-19-60
-17х>-79
х>-79÷(-17)
х>4,65
наименьшее натуральное число будет 5
5
19 - 6x < -5
6x>24
x>24/6
x>4 => наименьшее натуральное число:5 6)-7-30х<5х
-30х-5х<7
-35х<7
х<7÷(-35)
х<-0,2
наименьшего натурального числа нет, так как натуральные числа начинаются с 1
ОДЗ: числа a,c - целые положительные, не равны нулю (иначе число перевертыш будет начинаться с нуля, т.е. превратиться в двузначное), и b - целое неотрицательное
Нужно расписать каждое из чисел. (число ДО вычитания и ПОСЛЕ)
Пусть будет до это Х, после это У.
число X расписываем - то есть в записи это выглядит как abc, а расписанное как X=100a+10b+с. (Как в 5 классе)
По условию Y в обратное порядке. Тогда Y=100c+10b+a
А когда из Х вычитаем 297, должны получить У. Составим уравнение
100a+10b+c-297=100c+10b+a
b сократиться, что означает b любое из десяти цифр
99a-99c=297
99(a-c)=297
a-c=3
a=3+c
Составим такие пары: 4 1. 5 2. 6 3. 7 4. 8 5. 9 6. получили 6 пар.
Но! Так как b любое из 10 цифр, то
6*10=60 различных трехзначных чисел
ответ: Г - 60