с-12=0
с=12
х:108=1
х=108*1
х=108
б*15=0
б=0:15
б=0
Пусть событие А - изделие окажется бракованным и рассмотрим гипотезы :
H_1-H
1
− изделие изготовлено первым поставщиком;
H_2-H
2
− изделие изготовлено вторым поставщиком;
H_3-H
3
− изделие изготовлено третьим поставщиком
Из условия P(H_1)=\dfrac{200}{1000}=0.2;~ P(H_2)=\dfrac{300}{1000}=0.3;~ P(H_3)=\dfrac{500}{1000}=0.5P(H
1
)=
1000
200
=0.2; P(H
2
)=
1000
300
=0.3; P(H
3
)=
1000
500
=0.5 и условные вероятности
\begin{gathered}P(A|H_1)=5\%:100\%=0.05\\ P(A|H_2)=6\%:100\%=0.06\\ P(A|H_3)=4\%:100\%=0.04\end{gathered}
P(A∣H
1
)=5%:100%=0.05
P(A∣H
2
)=6%:100%=0.06
P(A∣H
3
)=4%:100%=0.04
По формуле полной вероятности, вероятность получения со склада бракованного изделия равна
\begin{gathered}P(A)=P(A|H_1)P(H_1)+P(A|H_2)P(H_2)+P(A|H_3)P(H_3)=\\ \\ =0.2\cdot 0.05+0.3\cdot 0.06+0.5\cdot 0.04=0.048\end{gathered}
P(A)=P(A∣H
1
)P(H
1
)+P(A∣H
2
)P(H
2
)+P(A∣H
3
)P(H
3
)=
=0.2⋅0.05+0.3⋅0.06+0.5⋅0.04=0.048
Тогда вероятность получения со склада годного изделия равна
\overline{P(A)}=1-P(A)=1-0.048=0.952
P(A)
=1−P(A)=1−0.048=0.952
ответ: 0,952.
Пошаговое объяснение: 1) у=3-х. Если х=0, у=3, если х=1, у=2, проводим прямую через эти точки (0;3),(1;2)
2) у=4+2х. Если х=0, у=4, если х=1, у=6, проводим прямую через эти точки (0;4)(1,6)
3) у=0.75-1\4х. Если х=о, у=0.75, если х=1, у=0.5 проводим прямую через эти точки (0;0,75)(1;0.5) точки можно отмечать приблизительно
4) у=2-3х. Если х=0, у=2, если х=1, у=-1 проводим прямую через эти точки (0;2)(1;-1)
5) х= 9, графиком будет прямая, перпендикулярная оси у, и проходящая через ось х в точке (9;0)
6) у=2, графиком будет прямая перпендикулярная оси х, проходящая через ось у в точке (0;2)
с-12=0
с=0+12
с=12
х/108=1
х=1*108
х=108
b*15=0)
b=0/15
b=0