Рассмотрим любые 5 последовательных натуральных чисел, они имеют вид: n, n+1, n+2, n+3, n+4, где n любое натуральное число. Их сумма квадратов равна: n^2+(n+1)^2+(n+2)^2+(n+3)^2+(n+4)^2= =n^2+(n^2+2n+1)+(n^2+4n+4)+(n^2+6n+9)+(n^2+8n+16)= =5n^2+20N+30. Так как 5n^2+20N+30 нельзя представить в виде (an+b)^2, где a и b целые числа, то таким образом доказано, что: не существует пяти последовательных натуральных чисел, сумма квадратов которых есть квадрат натурального числа.
Красная и желтая охра, которую получали из окиси железа. Синие красители изготовлялись там из синего карбоната меди, а также из искусственной фритты путем прокаливания соединения кремнезема, малахита, углекислого кальция и соды. зеленая ярь-медянка и синяя ляпис-лазурь, получаемые из окислов меди, а также черная краска, сделанная из сажи, толченого древесного угля или черной марганцевой руды. Знаменитая пурпурная краска добывалась из особого морского моллюска (пурпурной улитки), а карминно-красная краска кошениль — из насекомых, паразитирующих на деревьях и травах. Также для получения красных тонов существовали и другие источники красителей, такие как хна или корни многолетнего растения алканны. Синюю же краску в основном добывали из индигоносных растений. Многовариантными были и соединения разных красителей. Так, зеленую краску получали в результате смешивания индиго с желтой краской, а черную — наложением красной краски на синюю.
Родился 31 марта 1596 года в городе Лаэ (La Haye en Touraine), ныне Декарт (Descartes), департамент Эндр и Луара, Франция. Его мать умерла, когда ему был 1 год. Отец Декарта был судьёй в городе Ренн и в Лаэ появлялся редко; воспитанием мальчика занималась бабушка по матери. В детстве Рене отличался хрупким здоровьем и невероятной любознательностью[1]. Начальное образование Декарт получил в иезуитском колле́же Ла Флеш, где его учителем был Жан Франсуа. В коллеже Декарт познакомился с Мареном Мерсенном (тогда — учеником, позже — священником), будущим координатором научной жизни Франции. Религиозное образование только укрепило в молодом Декарте скептическое отношение к тогдашним философским авторитетам. Позже он сформулировал свой метод познания: дедуктивные (математические) рассуждения над результатами воспроизводимых опытов. В 1612 году Декарт закончил коллеж, некоторое время изучал право в Пуатье, затем уехал в Париж, где несколько лет чередовал рассеянную жизнь с математическими исследованиями. Затем он поступил на военную службу (1617) — сначала в революционной Голландии (в те годы — союзнице Франции), затем в Германии, где участвовал в недолгой битве за Прагу (Тридцатилетняя война). В Голландии в 1618 г. Декарт познакомился с выдающимся физиком и натурфилософом Исааком Бекманом, оказавшим значительное влияние на его формирование как учёного. Несколько лет Декарт провёл в Париже, предаваясь научной работе, где, помимо прочего, открыл принцип виртуальных скоростей, который в то время никто ещё не был готов оценить по достоинству. Затем — ещё несколько лет участия в войне (осада Ля-Рошели). По возвращении во Францию оказалось, что свободомыслие Декарта стало известно иезуитам, и те обвинили его в ереси. Поэтому Декарт переезжает в Голландию (1628), где проводит 20 лет[2] в уединённых научных занятиях. Он ведёт обширную переписку с лучшими учёными Европы (через верного Мерсенна), изучает самые различные науки — от медицины до метеорологии. Наконец, в 1634 году он заканчивает свою первую, программную книгу под названием «Мир» (Le Monde), состоящую из двух частей: «Трактат о свете» и «Трактат о человеке». Но момент для издания был неудачным — годом ранее инквизиция чуть не замучила Галилея. Поэтому Декарт решил при жизни не печатать этот труд. Он писал Мерсенну об осуждении Галилея:
Рассмотрим любые 5 последовательных натуральных чисел, они имеют вид: n, n+1, n+2, n+3, n+4, где n любое натуральное число.
Их сумма квадратов равна:
n^2+(n+1)^2+(n+2)^2+(n+3)^2+(n+4)^2=
=n^2+(n^2+2n+1)+(n^2+4n+4)+(n^2+6n+9)+(n^2+8n+16)=
=5n^2+20N+30.
Так как 5n^2+20N+30 нельзя представить в виде (an+b)^2, где a и b целые числа, то таким образом доказано, что:
не существует пяти последовательных натуральных чисел, сумма квадратов которых есть квадрат натурального числа.