В конце марта 1771 года, во время первого путешествия по Италии, Леопольд Моцарт с сыном задержались в Болонье, чтобы познакомиться с падре Мартини. Этот выдающийся композитор, историк и теоретик музыки был членом и фактическим руководителем болонской Филармонической академии, самого известного музыкального института своего времени. Диплом академии открывал двери ко многим престижным и хорошо оплачиваемым должностям. Отец Моцарта постарался устроить знакомство сына с падре Мартини. Мартири сразу же отметил талант Моцарта и с радостью взялся готовить его к экзамену в Филармоническую академию. Три месяца подряд Моцарт ходил к нему каждый день, постигая под его руководством тайны контрапункта и прочие музыкальные премудрости. 9 октября он с успехом сдал экзамен, переработав для четырех партий григорианский антифон «Quaerite primum regnum Dei».
:(
Забегая вперед, скажу, что никаких особенных преимуществ диплом Филармонической академии Моцарту не дал, однако о занятиях с падре Мартини он сохранил самые благодарные воспоминания.
Пошаговое объяснение:
Проведем из вершины В параллелограмма высоты ВК и ВН к сторонам АД и СД.
Так как у параллелограмма длины противоположных сторон равны, то АД = ВС = 18 см, СД = АВ = 12 см.
Применим формулу площади параллелограмма.
S = АД * ВК и S = СД * ВН.
S = 18 * ВК = 144.
ВК = 144 / 18 = 8 см.
Из прямоугольного треугольника МВК, по теореме Пифагора, определим длину гипотенузы МК.
МК2 = ВК2 + МВ2 = 82 + 122 = 64 + 144 = 208.
МК = 4 * √13 см.
S = СД * ВН.
S = 12 * ВН = 144.
ВК = 144 / 12 = 12 см.
Из прямоугольного треугольника МВН, по теореме Пифагора, определим длину гипотенузы МН.
МН2 = ВН2 + МВ2 = 122 + 122 = 144 + 144 = 228.
МН = 2 * √12 см.
ответ: Расстояния от точки M до прямой AД равно 4 * √13 см, до прямой CД равно 2 * √12 см.
48 м 25 см 6 мм = 48256 мм.
48 м = 4800 см = 48000 мм.
25 см = 250 мм.
48000 мм + 250 мм + 6 мм = 48256 мм.