0
Пошаговое объяснение:
Пример кажется очень сложным, но на самом деле он простой.
Если мы пересчитаем разные буквы, то получим:
Р, Е, П, Т, И, О, Н, У, Ж, Ш.
Как видим, использованы все 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Это может означать два варианта:
1) В примере Р×Е×П×Е×Т×И×Т×О×Р = Н×У×Ж×Е×Н не используется цифра 0.
Я не знаю, как этот пример решить, но допустим, как-то можно.
Но тогда я точно могу сказать, что Ш = 0.
2) В примере используется цифра 0, то есть Е = 0 (потому что Е есть и слева и справа), остальные цифры могут быть любыми.
В обоих случаях произведение Р×Е×Ш×Е×Н×И×Е = 0
7
Пошаговое объяснение:
Окружность можно разбить на секторы с градусной мерой 1/9 градуса, так как все повороты треугольника происходят на угол, кратный 1/9 градуса. Пусть 1 деление соответствует 1/9 градуса. Тогда происходили такие действия:
1) Треугольник повернули на 1 деление - соответствует углу 1/9 градуса
2) Повернули на 3 деления - соответствует углу 1/3 градуса
3) Повернули на 9 делений - соответствует 1 градусу
...
103) Повернули на
деления - соответствует
градусов.
Тогда для поворота номер n величина поворота относительно начального положения треугольника (в делениях) равна сумме геометрической прогрессии:
Можно заметить, что
. Действительно,
.
Видим, что два положения треугольника совпадают, если разность углов поворота кратна 120 градусам или же 120/(1/9)=1080 делений, так как треугольник равносторонний.
Пусть был угол поворота в делениях
, где
. При новом повороте треугольника угол поворота станет равным
. Это значит, что преобразование f -> 3f+1 можно применять с отсечением периода.
Задача свелась к тому, чтобы найти количество уникальных значений последовательности
.
Тогда построим последовательность положений треугольника:
0) 0 (начальное положение)
1) 3*0+1 (mod 1080) = 1
2) 1*3+1 (mod 1080) = 4
3) 4*3+1 (mod 1080) = 13
4) 13*3+1 (mod 1080) = 40
5) 40*3+1 (mod 1080) = 121
6) 121*3+1 (mod 1080) = 364
7) 364*3+1 (mod 1080) = 13
Видим, что на шаге 7 появилось уже полученное ранее значение. Следовательно, дальше повороты будут получаться так же циклически. Поэтому количество уникальных положений треугольника равно 7.