М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кио4
кио4
17.01.2023 09:57 •  Математика

Грузовик вместимостью 7 т заполнен на 8/9 песком.на первом объекте из него выгрузили 2/7 имеющегося песка.сколько песка осталось?

👇
Ответ:
попкорн6
попкорн6
17.01.2023

Загружен на 7* 8/9= 56/9 тонн

 

выгрузили 2/7 осталось 5/7

 

56/9 * 5/7= 280/63= 4 целых 4/9 тонны осталось

4,6(87 оценок)
Ответ:
shurik23021983
shurik23021983
17.01.2023

1) сколько песка загрузили?

7*8/9=56/9 т

2) сколько осталось после выгрузки на первом объекте?

7/7-2/7=5/7

 

56/9*5/7=40/9т=4 4/9 тонн осталось

 

4,7(38 оценок)
Открыть все ответы
Ответ:
AleksandrO0s
AleksandrO0s
17.01.2023
Для того, чтобы найти количество трёхзначных чисел, которые делятся на 3, но не делятся на 7, нужно из количества трёхзначных чисел, которые делятся на 3 отнять количество трёхзначных чисел, которые одновременно делятся на 3 и на 7, то есть делятся на 21.

Найдём количество членов арифметической прогрессии чисел, делящихся на 3,на промежутке от 100 до 999.
Шаг прогрессии: d=3
Первое число данной алгоритмической прогрессии: a_1=102
Последнее число данной алгоритмической прогрессии: a_n=999
Количество членов данной алгоритмической прогрессии: n_3= \frac{a_n}{d}-\frac{a_1}{d}+1=\frac{999}{3}-\frac{102}{3}+1=333-34+1=300.

Найдём количество членов арифметической прогрессии чисел, делящихся на 21,на промежутке от 100 до 999.
Шаг прогрессии: d=21
Первое число данной алгоритмической прогрессии: a_1=105
Последнее число данной алгоритмической прогрессии: a_n=987
Количество членов данной алгоритмической прогрессии: n_21= \frac{a_n}{d}-\frac{a_1}{d}+1=\frac{987}{21}-\frac{105}{21}+1=47-5+1=43.

Таким образом количество трёхзначных чисел, делящихся на 3, но не делящихся на 7, будет равно:
n=n_{3}-n_{21}=300-43=257 чисел.
4,5(20 оценок)
Ответ:
chackandrew
chackandrew
17.01.2023
1 задача, ты совершенно не объяснил что делать. 
2 я решу:

Для того что бы найти уравнение касательной к графику функции, нужно:

Найти производную f'(x_{0} )
Из полученной производной, делаем уравнение: y= f(x_{0})+f'(x_{0})(x-x_{0})
И это и есть уравнение касательной, а теперь, перейдем к решению:

Найдем производную функции f(x)=x^3
Это простая степенная функция, а в каждой степенной функции, производную находят так: ax^a^-^1 - где а- степень
В нашей 3 степени: f'(x)= 3x^2 - вот такая вот производная

Дальше делаем так:

y=f(3)+f'(3)(x-3)
 
Вначале найдем значение функции f(x)=x^3 в точке x_{0}:

f(3)= 3^3= 9

И получаем следующее: 
y=9+3*9^2*(x-9)
y=9+3*(3^2)^3-27x^2
y= 738-27x^2
Ну если упростить, получим:
y=3(-3x^2+82) - это и есть касательная в ДАННОЙ точке.

Не со всем правильно я где то решил, но суть та же, а касательная : y=27x-54
4,5(9 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ