Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.
для начала нам нужно упростить выражения с y,
\frac{y^2-4y+4}{y^2-4} : \frac{10y-20}{y^2+2y}
y
2
−4
y
2
−4y+4
:
y
2
+2y
10y−20
если ты написал все правильно в условии то мы сможем такое решить: начнем упрощать выражение --->
\begin{gathered}\frac{(y-2)^2}{(y-2)(y+2)}*\frac{y(y+2)}{10(y-2)}\\\end{gathered}
(y−2)(y+2)
(y−2)
2
∗
10(y−2)
y(y+2)
выражения сворачиваем по формулам , квадрат разности и разность квадратов . Пойдем дальше сокращаем
\frac{(y-2)^2*y(y+2)}{(y-2)(y+2)*10(y-2)}=
(y−2)(y+2)∗10(y−2)
(y−2)
2
∗y(y+2)
= \frac{y}{10}-
10
y
− тем самым имеем такое выражение , после подставляем наше значение при y=80y=80 , тем самым имеем что все наше выражение =\frac{80}{10} =0,8=
10
80
=0,8 .
ответ: 0.8