1) (2/7х) · (-1/3) · (-21) = -5,
(2/7х) · (1/3 · 21) = -5,
(2/7х) · 7 = -5,
2х = -5,
х = -5 : 2.
х = -2,5;
2) х + (16/25 - 4/5) = -3 целых 2/5 : 5/6,
16/25 - 4/5 = 16/25 - 20/25 = -(20/25 - 16/25) = -4/25;
-3 целых 2/5 : 5/6 = -17/5 · 6/5 = -102/25 = -4 целых 2/25;
получим уравнение:
х + (-4/25) = -4 целых 2/25,
х - 4/25 = -4 целых 2/25,
х = -4 целых 2/25 + 4/25,
х = -(3 целых 27/25 - 4/25),
х = -3 целых 23/25;
3) -3/7у = -6/7 · 2,5,
-3/7у = -6/7 · 5/2,
-3/7у = -15/7,
у = -15/7 : (-3/7),
у = 15/7 · 7/3,
у = 5;
4) х - (1 целая 5/7 - 1/3) = -1 целая 2/7 : 0,5,
1 целая 5/7 - 1/3 = 1 целая 15/21 - 7/21 = 1 целая 8/21,
1 целая 2/7 : 0,5 = 9/7 : 1/2 = 9/7 · 2/1 = 18/7 = 2 целых 4/7;
получим уравнение:
х - 1 целая 8/21 = -2 целых 4/7,
х = -2 целых 4/7 + 1 целая 8/21,
х = -(2 целых 4/7 - 1 целая 8/21).
х = -(2 целых 12/21 - 1 целая 8/21),
х = -1 целая 4/21.
Пошаговое объяснение:
Сумма первых 10 членов
S10 = (2a1+9d)/2*10 = 5*(2a1+9d) = 10a1+45d
Сумма с 11 по 20 равна разнице сумм первых 20 членов и первых 10 членов.
S20 = (2a1+19d)/2*20 = 10*(2a1+19d) = 20a1+190d
S(11-20) = S20-S10 = 20a1+190d-10a1-45d = 10a1+145d.
Зная S10 и S(11-20) cоставим и решим систему уравнений относительно a1 и d:
10a1+45d = 95
10a1+145d = 295
Вычтем из второго уравнения первое, а из первого выразим a1:
a1 = (95-45d)/10
100d = 200
a1 = 5/10 = 0,5
d = 2
Зная первый член прогрессии и её шаг, можем найти сумму членов этой прогрессии с 21 по 30. Она будет равна разности сумм первых 30 членов и первых 20 членов:
S(21-30) = S30-S20 = (2a1+29d)/2*30-(2a1+19d)/2*20 = 15*(2a1+29d)-10*(2a1+19d) = 30a1+435d-20a1-190d = 10a1+245d = 10*0,5+245*2 = 5+490 = 495